| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrgfldext.b |
|- B = ( Base ` E ) |
| 2 |
|
sdrgfldext.e |
|- ( ph -> E e. Field ) |
| 3 |
|
sdrgfldext.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 4 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
| 6 |
1
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ B ) |
| 7 |
3 6
|
syl |
|- ( ph -> F C_ B ) |
| 8 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
| 9 |
8 1
|
ressbas2 |
|- ( F C_ B -> F = ( Base ` ( E |`s F ) ) ) |
| 10 |
7 9
|
syl |
|- ( ph -> F = ( Base ` ( E |`s F ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ph -> ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) ) |
| 12 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 13 |
3 12
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 14 |
10 13
|
eqeltrrd |
|- ( ph -> ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) ) |
| 15 |
|
brfldext |
|- ( ( E e. Field /\ ( E |`s F ) e. Field ) -> ( E /FldExt ( E |`s F ) <-> ( ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) /\ ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) ) ) ) |
| 16 |
15
|
biimpar |
|- ( ( ( E e. Field /\ ( E |`s F ) e. Field ) /\ ( ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) /\ ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) ) ) -> E /FldExt ( E |`s F ) ) |
| 17 |
2 5 11 14 16
|
syl22anc |
|- ( ph -> E /FldExt ( E |`s F ) ) |