Metamath Proof Explorer


Theorem sdrgfldext

Description: A field E and any sub-division-ring F of E form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses sdrgfldext.b
|- B = ( Base ` E )
sdrgfldext.e
|- ( ph -> E e. Field )
sdrgfldext.f
|- ( ph -> F e. ( SubDRing ` E ) )
Assertion sdrgfldext
|- ( ph -> E /FldExt ( E |`s F ) )

Proof

Step Hyp Ref Expression
1 sdrgfldext.b
 |-  B = ( Base ` E )
2 sdrgfldext.e
 |-  ( ph -> E e. Field )
3 sdrgfldext.f
 |-  ( ph -> F e. ( SubDRing ` E ) )
4 fldsdrgfld
 |-  ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field )
5 2 3 4 syl2anc
 |-  ( ph -> ( E |`s F ) e. Field )
6 1 sdrgss
 |-  ( F e. ( SubDRing ` E ) -> F C_ B )
7 3 6 syl
 |-  ( ph -> F C_ B )
8 eqid
 |-  ( E |`s F ) = ( E |`s F )
9 8 1 ressbas2
 |-  ( F C_ B -> F = ( Base ` ( E |`s F ) ) )
10 7 9 syl
 |-  ( ph -> F = ( Base ` ( E |`s F ) ) )
11 10 oveq2d
 |-  ( ph -> ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) )
12 sdrgsubrg
 |-  ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) )
13 3 12 syl
 |-  ( ph -> F e. ( SubRing ` E ) )
14 10 13 eqeltrrd
 |-  ( ph -> ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) )
15 brfldext
 |-  ( ( E e. Field /\ ( E |`s F ) e. Field ) -> ( E /FldExt ( E |`s F ) <-> ( ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) /\ ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) ) ) )
16 15 biimpar
 |-  ( ( ( E e. Field /\ ( E |`s F ) e. Field ) /\ ( ( E |`s F ) = ( E |`s ( Base ` ( E |`s F ) ) ) /\ ( Base ` ( E |`s F ) ) e. ( SubRing ` E ) ) ) -> E /FldExt ( E |`s F ) )
17 2 5 11 14 16 syl22anc
 |-  ( ph -> E /FldExt ( E |`s F ) )