Metamath Proof Explorer


Theorem sdrgfldext

Description: A field E and any sub-division-ring F of E form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses sdrgfldext.b 𝐵 = ( Base ‘ 𝐸 )
sdrgfldext.e ( 𝜑𝐸 ∈ Field )
sdrgfldext.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
Assertion sdrgfldext ( 𝜑𝐸 /FldExt ( 𝐸s 𝐹 ) )

Proof

Step Hyp Ref Expression
1 sdrgfldext.b 𝐵 = ( Base ‘ 𝐸 )
2 sdrgfldext.e ( 𝜑𝐸 ∈ Field )
3 sdrgfldext.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
4 fldsdrgfld ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸s 𝐹 ) ∈ Field )
5 2 3 4 syl2anc ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Field )
6 1 sdrgss ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹𝐵 )
7 3 6 syl ( 𝜑𝐹𝐵 )
8 eqid ( 𝐸s 𝐹 ) = ( 𝐸s 𝐹 )
9 8 1 ressbas2 ( 𝐹𝐵𝐹 = ( Base ‘ ( 𝐸s 𝐹 ) ) )
10 7 9 syl ( 𝜑𝐹 = ( Base ‘ ( 𝐸s 𝐹 ) ) )
11 10 oveq2d ( 𝜑 → ( 𝐸s 𝐹 ) = ( 𝐸s ( Base ‘ ( 𝐸s 𝐹 ) ) ) )
12 sdrgsubrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
13 3 12 syl ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
14 10 13 eqeltrrd ( 𝜑 → ( Base ‘ ( 𝐸s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) )
15 brfldext ( ( 𝐸 ∈ Field ∧ ( 𝐸s 𝐹 ) ∈ Field ) → ( 𝐸 /FldExt ( 𝐸s 𝐹 ) ↔ ( ( 𝐸s 𝐹 ) = ( 𝐸s ( Base ‘ ( 𝐸s 𝐹 ) ) ) ∧ ( Base ‘ ( 𝐸s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) ) ) )
16 15 biimpar ( ( ( 𝐸 ∈ Field ∧ ( 𝐸s 𝐹 ) ∈ Field ) ∧ ( ( 𝐸s 𝐹 ) = ( 𝐸s ( Base ‘ ( 𝐸s 𝐹 ) ) ) ∧ ( Base ‘ ( 𝐸s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) ) ) → 𝐸 /FldExt ( 𝐸s 𝐹 ) )
17 2 5 11 14 16 syl22anc ( 𝜑𝐸 /FldExt ( 𝐸s 𝐹 ) )