| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdrgfldext.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
sdrgfldext.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 3 |
|
sdrgfldext.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 4 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 6 |
1
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝐵 ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 8 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 9 |
8 1
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 12 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 14 |
10 13
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 15 |
|
brfldext |
⊢ ( ( 𝐸 ∈ Field ∧ ( 𝐸 ↾s 𝐹 ) ∈ Field ) → ( 𝐸 /FldExt ( 𝐸 ↾s 𝐹 ) ↔ ( ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) ) ) ) |
| 16 |
15
|
biimpar |
⊢ ( ( ( 𝐸 ∈ Field ∧ ( 𝐸 ↾s 𝐹 ) ∈ Field ) ∧ ( ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∧ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( SubRing ‘ 𝐸 ) ) ) → 𝐸 /FldExt ( 𝐸 ↾s 𝐹 ) ) |
| 17 |
2 5 11 14 16
|
syl22anc |
⊢ ( 𝜑 → 𝐸 /FldExt ( 𝐸 ↾s 𝐹 ) ) |