Metamath Proof Explorer


Theorem sdrgfldext

Description: A field E and any sub-division-ring F of E form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses sdrgfldext.b B = Base E
sdrgfldext.e φ E Field
sdrgfldext.f φ F SubDRing E
Assertion sdrgfldext φ E /FldExt E 𝑠 F

Proof

Step Hyp Ref Expression
1 sdrgfldext.b B = Base E
2 sdrgfldext.e φ E Field
3 sdrgfldext.f φ F SubDRing E
4 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
5 2 3 4 syl2anc φ E 𝑠 F Field
6 1 sdrgss F SubDRing E F B
7 3 6 syl φ F B
8 eqid E 𝑠 F = E 𝑠 F
9 8 1 ressbas2 F B F = Base E 𝑠 F
10 7 9 syl φ F = Base E 𝑠 F
11 10 oveq2d φ E 𝑠 F = E 𝑠 Base E 𝑠 F
12 sdrgsubrg F SubDRing E F SubRing E
13 3 12 syl φ F SubRing E
14 10 13 eqeltrrd φ Base E 𝑠 F SubRing E
15 brfldext E Field E 𝑠 F Field E /FldExt E 𝑠 F E 𝑠 F = E 𝑠 Base E 𝑠 F Base E 𝑠 F SubRing E
16 15 biimpar E Field E 𝑠 F Field E 𝑠 F = E 𝑠 Base E 𝑠 F Base E 𝑠 F SubRing E E /FldExt E 𝑠 F
17 2 5 11 14 16 syl22anc φ E /FldExt E 𝑠 F