Metamath Proof Explorer


Theorem xnn0nn0d

Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses xnn0nnd.1
|- ( ph -> N e. NN0* )
xnn0nnd.2
|- ( ph -> N e. RR )
Assertion xnn0nn0d
|- ( ph -> N e. NN0 )

Proof

Step Hyp Ref Expression
1 xnn0nnd.1
 |-  ( ph -> N e. NN0* )
2 xnn0nnd.2
 |-  ( ph -> N e. RR )
3 elxnn0
 |-  ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) )
4 1 3 sylib
 |-  ( ph -> ( N e. NN0 \/ N = +oo ) )
5 2 renepnfd
 |-  ( ph -> N =/= +oo )
6 5 neneqd
 |-  ( ph -> -. N = +oo )
7 4 6 olcnd
 |-  ( ph -> N e. NN0 )