Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xnn0nnd.1 | |- ( ph -> N e. NN0* ) |
|
| xnn0nnd.2 | |- ( ph -> N e. RR ) |
||
| Assertion | xnn0nn0d | |- ( ph -> N e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0nnd.1 | |- ( ph -> N e. NN0* ) |
|
| 2 | xnn0nnd.2 | |- ( ph -> N e. RR ) |
|
| 3 | elxnn0 | |- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
|
| 4 | 1 3 | sylib | |- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
| 5 | 2 | renepnfd | |- ( ph -> N =/= +oo ) |
| 6 | 5 | neneqd | |- ( ph -> -. N = +oo ) |
| 7 | 4 6 | olcnd | |- ( ph -> N e. NN0 ) |