Metamath Proof Explorer
Description: Conditions for an extended nonnegative integer to be a nonnegative
integer. (Contributed by Thierry Arnoux, 26-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
xnn0nnd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0* ) |
|
|
xnn0nnd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
|
Assertion |
xnn0nn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnn0nnd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0* ) |
| 2 |
|
xnn0nnd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 3 |
|
elxnn0 |
⊢ ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
| 5 |
2
|
renepnfd |
⊢ ( 𝜑 → 𝑁 ≠ +∞ ) |
| 6 |
5
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑁 = +∞ ) |
| 7 |
4 6
|
olcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |