Metamath Proof Explorer


Theorem xnn0nn0d

Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses xnn0nnd.1 ( 𝜑𝑁 ∈ ℕ0* )
xnn0nnd.2 ( 𝜑𝑁 ∈ ℝ )
Assertion xnn0nn0d ( 𝜑𝑁 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 xnn0nnd.1 ( 𝜑𝑁 ∈ ℕ0* )
2 xnn0nnd.2 ( 𝜑𝑁 ∈ ℝ )
3 elxnn0 ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
4 1 3 sylib ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
5 2 renepnfd ( 𝜑𝑁 ≠ +∞ )
6 5 neneqd ( 𝜑 → ¬ 𝑁 = +∞ )
7 4 6 olcnd ( 𝜑𝑁 ∈ ℕ0 )