Metamath Proof Explorer
Description: Conditions for an extended nonnegative integer to be a positive integer.
(Contributed by Thierry Arnoux, 26-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
xnn0nnd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0* ) |
|
|
xnn0nnd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
|
|
xnn0nnd.3 |
⊢ ( 𝜑 → 0 < 𝑁 ) |
|
Assertion |
xnn0nnd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnn0nnd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0* ) |
| 2 |
|
xnn0nnd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 3 |
|
xnn0nnd.3 |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 4 |
1 2
|
xnn0nn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
elnnnn0b |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |
| 6 |
4 3 5
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |