Metamath Proof Explorer


Theorem xnn0nnd

Description: Conditions for an extended nonnegative integer to be a positive integer. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses xnn0nnd.1 ( 𝜑𝑁 ∈ ℕ0* )
xnn0nnd.2 ( 𝜑𝑁 ∈ ℝ )
xnn0nnd.3 ( 𝜑 → 0 < 𝑁 )
Assertion xnn0nnd ( 𝜑𝑁 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 xnn0nnd.1 ( 𝜑𝑁 ∈ ℕ0* )
2 xnn0nnd.2 ( 𝜑𝑁 ∈ ℝ )
3 xnn0nnd.3 ( 𝜑 → 0 < 𝑁 )
4 1 2 xnn0nn0d ( 𝜑𝑁 ∈ ℕ0 )
5 elnnnn0b ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) )
6 4 3 5 sylanbrc ( 𝜑𝑁 ∈ ℕ )