Metamath Proof Explorer
Description: Conditions for an extended nonnegative integer to be a positive integer.
(Contributed by Thierry Arnoux, 26-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
xnn0nnd.1 |
|
|
|
xnn0nnd.2 |
|
|
|
xnn0nnd.3 |
|
|
Assertion |
xnn0nnd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnn0nnd.1 |
|
| 2 |
|
xnn0nnd.2 |
|
| 3 |
|
xnn0nnd.3 |
|
| 4 |
1 2
|
xnn0nn0d |
|
| 5 |
|
elnnnn0b |
|
| 6 |
4 3 5
|
sylanbrc |
|