Metamath Proof Explorer


Theorem xnn0nnd

Description: Conditions for an extended nonnegative integer to be a positive integer. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses xnn0nnd.1 φ N 0 *
xnn0nnd.2 φ N
xnn0nnd.3 φ 0 < N
Assertion xnn0nnd φ N

Proof

Step Hyp Ref Expression
1 xnn0nnd.1 φ N 0 *
2 xnn0nnd.2 φ N
3 xnn0nnd.3 φ 0 < N
4 1 2 xnn0nn0d φ N 0
5 elnnnn0b N N 0 0 < N
6 4 3 5 sylanbrc φ N