Metamath Proof Explorer


Theorem elnnnn0b

Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion elnnnn0b NN00<N

Proof

Step Hyp Ref Expression
1 nnnn0 NN0
2 nngt0 N0<N
3 1 2 jca NN00<N
4 elnn0 N0NN=0
5 breq2 N=00<N0<0
6 0re 0
7 6 ltnri ¬0<0
8 7 pm2.21i 0<0N
9 5 8 biimtrdi N=00<NN
10 9 jao1i NN=00<NN
11 4 10 sylbi N00<NN
12 11 imp N00<NN
13 3 12 impbii NN00<N