| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexmul2.a |
|- ( ph -> A e. RR ) |
| 2 |
|
rexmul2.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
rexmul2.c |
|- ( ph -> C e. RR* ) |
| 4 |
|
rexmul2.1 |
|- ( ph -> 0 < C ) |
| 5 |
|
rexmul2.2 |
|- ( ph -> A = ( B *e C ) ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ B = +oo ) -> A = ( B *e C ) ) |
| 7 |
|
simpr |
|- ( ( ph /\ B = +oo ) -> B = +oo ) |
| 8 |
7
|
oveq1d |
|- ( ( ph /\ B = +oo ) -> ( B *e C ) = ( +oo *e C ) ) |
| 9 |
|
xmulpnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo ) |
| 10 |
3 4 9
|
syl2anc |
|- ( ph -> ( +oo *e C ) = +oo ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ B = +oo ) -> ( +oo *e C ) = +oo ) |
| 12 |
6 8 11
|
3eqtrd |
|- ( ( ph /\ B = +oo ) -> A = +oo ) |
| 13 |
1
|
renepnfd |
|- ( ph -> A =/= +oo ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ B = +oo ) -> A =/= +oo ) |
| 15 |
14
|
neneqd |
|- ( ( ph /\ B = +oo ) -> -. A = +oo ) |
| 16 |
12 15
|
pm2.65da |
|- ( ph -> -. B = +oo ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ B = -oo ) -> A = ( B *e C ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ B = -oo ) -> B = -oo ) |
| 19 |
18
|
oveq1d |
|- ( ( ph /\ B = -oo ) -> ( B *e C ) = ( -oo *e C ) ) |
| 20 |
|
xmulmnf2 |
|- ( ( C e. RR* /\ 0 < C ) -> ( -oo *e C ) = -oo ) |
| 21 |
3 4 20
|
syl2anc |
|- ( ph -> ( -oo *e C ) = -oo ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ B = -oo ) -> ( -oo *e C ) = -oo ) |
| 23 |
17 19 22
|
3eqtrd |
|- ( ( ph /\ B = -oo ) -> A = -oo ) |
| 24 |
1
|
renemnfd |
|- ( ph -> A =/= -oo ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ B = -oo ) -> A =/= -oo ) |
| 26 |
25
|
neneqd |
|- ( ( ph /\ B = -oo ) -> -. A = -oo ) |
| 27 |
23 26
|
pm2.65da |
|- ( ph -> -. B = -oo ) |
| 28 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 29 |
2 28
|
sylib |
|- ( ph -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 30 |
16 27 29
|
ecase23d |
|- ( ph -> B e. RR ) |