Metamath Proof Explorer


Theorem rexmul2

Description: If the result A of an extended real multiplication is real, then its first factor B is also real. See also rexmul . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses rexmul2.a
|- ( ph -> A e. RR )
rexmul2.b
|- ( ph -> B e. RR* )
rexmul2.c
|- ( ph -> C e. RR* )
rexmul2.1
|- ( ph -> 0 < C )
rexmul2.2
|- ( ph -> A = ( B *e C ) )
Assertion rexmul2
|- ( ph -> B e. RR )

Proof

Step Hyp Ref Expression
1 rexmul2.a
 |-  ( ph -> A e. RR )
2 rexmul2.b
 |-  ( ph -> B e. RR* )
3 rexmul2.c
 |-  ( ph -> C e. RR* )
4 rexmul2.1
 |-  ( ph -> 0 < C )
5 rexmul2.2
 |-  ( ph -> A = ( B *e C ) )
6 5 adantr
 |-  ( ( ph /\ B = +oo ) -> A = ( B *e C ) )
7 simpr
 |-  ( ( ph /\ B = +oo ) -> B = +oo )
8 7 oveq1d
 |-  ( ( ph /\ B = +oo ) -> ( B *e C ) = ( +oo *e C ) )
9 xmulpnf2
 |-  ( ( C e. RR* /\ 0 < C ) -> ( +oo *e C ) = +oo )
10 3 4 9 syl2anc
 |-  ( ph -> ( +oo *e C ) = +oo )
11 10 adantr
 |-  ( ( ph /\ B = +oo ) -> ( +oo *e C ) = +oo )
12 6 8 11 3eqtrd
 |-  ( ( ph /\ B = +oo ) -> A = +oo )
13 1 renepnfd
 |-  ( ph -> A =/= +oo )
14 13 adantr
 |-  ( ( ph /\ B = +oo ) -> A =/= +oo )
15 14 neneqd
 |-  ( ( ph /\ B = +oo ) -> -. A = +oo )
16 12 15 pm2.65da
 |-  ( ph -> -. B = +oo )
17 5 adantr
 |-  ( ( ph /\ B = -oo ) -> A = ( B *e C ) )
18 simpr
 |-  ( ( ph /\ B = -oo ) -> B = -oo )
19 18 oveq1d
 |-  ( ( ph /\ B = -oo ) -> ( B *e C ) = ( -oo *e C ) )
20 xmulmnf2
 |-  ( ( C e. RR* /\ 0 < C ) -> ( -oo *e C ) = -oo )
21 3 4 20 syl2anc
 |-  ( ph -> ( -oo *e C ) = -oo )
22 21 adantr
 |-  ( ( ph /\ B = -oo ) -> ( -oo *e C ) = -oo )
23 17 19 22 3eqtrd
 |-  ( ( ph /\ B = -oo ) -> A = -oo )
24 1 renemnfd
 |-  ( ph -> A =/= -oo )
25 24 adantr
 |-  ( ( ph /\ B = -oo ) -> A =/= -oo )
26 25 neneqd
 |-  ( ( ph /\ B = -oo ) -> -. A = -oo )
27 23 26 pm2.65da
 |-  ( ph -> -. B = -oo )
28 elxr
 |-  ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) )
29 2 28 sylib
 |-  ( ph -> ( B e. RR \/ B = +oo \/ B = -oo ) )
30 16 27 29 ecase23d
 |-  ( ph -> B e. RR )