Metamath Proof Explorer


Theorem rexmul2

Description: If the result A of an extended real multiplication is real, then its first factor B is also real. See also rexmul . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses rexmul2.a ( 𝜑𝐴 ∈ ℝ )
rexmul2.b ( 𝜑𝐵 ∈ ℝ* )
rexmul2.c ( 𝜑𝐶 ∈ ℝ* )
rexmul2.1 ( 𝜑 → 0 < 𝐶 )
rexmul2.2 ( 𝜑𝐴 = ( 𝐵 ·e 𝐶 ) )
Assertion rexmul2 ( 𝜑𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rexmul2.a ( 𝜑𝐴 ∈ ℝ )
2 rexmul2.b ( 𝜑𝐵 ∈ ℝ* )
3 rexmul2.c ( 𝜑𝐶 ∈ ℝ* )
4 rexmul2.1 ( 𝜑 → 0 < 𝐶 )
5 rexmul2.2 ( 𝜑𝐴 = ( 𝐵 ·e 𝐶 ) )
6 5 adantr ( ( 𝜑𝐵 = +∞ ) → 𝐴 = ( 𝐵 ·e 𝐶 ) )
7 simpr ( ( 𝜑𝐵 = +∞ ) → 𝐵 = +∞ )
8 7 oveq1d ( ( 𝜑𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) )
9 xmulpnf2 ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ )
10 3 4 9 syl2anc ( 𝜑 → ( +∞ ·e 𝐶 ) = +∞ )
11 10 adantr ( ( 𝜑𝐵 = +∞ ) → ( +∞ ·e 𝐶 ) = +∞ )
12 6 8 11 3eqtrd ( ( 𝜑𝐵 = +∞ ) → 𝐴 = +∞ )
13 1 renepnfd ( 𝜑𝐴 ≠ +∞ )
14 13 adantr ( ( 𝜑𝐵 = +∞ ) → 𝐴 ≠ +∞ )
15 14 neneqd ( ( 𝜑𝐵 = +∞ ) → ¬ 𝐴 = +∞ )
16 12 15 pm2.65da ( 𝜑 → ¬ 𝐵 = +∞ )
17 5 adantr ( ( 𝜑𝐵 = -∞ ) → 𝐴 = ( 𝐵 ·e 𝐶 ) )
18 simpr ( ( 𝜑𝐵 = -∞ ) → 𝐵 = -∞ )
19 18 oveq1d ( ( 𝜑𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) = ( -∞ ·e 𝐶 ) )
20 xmulmnf2 ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( -∞ ·e 𝐶 ) = -∞ )
21 3 4 20 syl2anc ( 𝜑 → ( -∞ ·e 𝐶 ) = -∞ )
22 21 adantr ( ( 𝜑𝐵 = -∞ ) → ( -∞ ·e 𝐶 ) = -∞ )
23 17 19 22 3eqtrd ( ( 𝜑𝐵 = -∞ ) → 𝐴 = -∞ )
24 1 renemnfd ( 𝜑𝐴 ≠ -∞ )
25 24 adantr ( ( 𝜑𝐵 = -∞ ) → 𝐴 ≠ -∞ )
26 25 neneqd ( ( 𝜑𝐵 = -∞ ) → ¬ 𝐴 = -∞ )
27 23 26 pm2.65da ( 𝜑 → ¬ 𝐵 = -∞ )
28 elxr ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) )
29 2 28 sylib ( 𝜑 → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) )
30 16 27 29 ecase23d ( 𝜑𝐵 ∈ ℝ )