| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexmul2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
rexmul2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
rexmul2.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
rexmul2.1 |
⊢ ( 𝜑 → 0 < 𝐶 ) |
| 5 |
|
rexmul2.2 |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 ·e 𝐶 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → 𝐴 = ( 𝐵 ·e 𝐶 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → 𝐵 = +∞ ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
| 9 |
|
xmulpnf2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ ) |
| 10 |
3 4 9
|
syl2anc |
⊢ ( 𝜑 → ( +∞ ·e 𝐶 ) = +∞ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → ( +∞ ·e 𝐶 ) = +∞ ) |
| 12 |
6 8 11
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → 𝐴 = +∞ ) |
| 13 |
1
|
renepnfd |
⊢ ( 𝜑 → 𝐴 ≠ +∞ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → 𝐴 ≠ +∞ ) |
| 15 |
14
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐵 = +∞ ) → ¬ 𝐴 = +∞ ) |
| 16 |
12 15
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐵 = +∞ ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝐴 = ( 𝐵 ·e 𝐶 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) |
| 19 |
18
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) = ( -∞ ·e 𝐶 ) ) |
| 20 |
|
xmulmnf2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( -∞ ·e 𝐶 ) = -∞ ) |
| 21 |
3 4 20
|
syl2anc |
⊢ ( 𝜑 → ( -∞ ·e 𝐶 ) = -∞ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → ( -∞ ·e 𝐶 ) = -∞ ) |
| 23 |
17 19 22
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝐴 = -∞ ) |
| 24 |
1
|
renemnfd |
⊢ ( 𝜑 → 𝐴 ≠ -∞ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → 𝐴 ≠ -∞ ) |
| 26 |
25
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐵 = -∞ ) → ¬ 𝐴 = -∞ ) |
| 27 |
23 26
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐵 = -∞ ) |
| 28 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 29 |
2 28
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 30 |
16 27 29
|
ecase23d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |