Metamath Proof Explorer


Theorem rexmul2

Description: If the result A of an extended real multiplication is real, then its first factor B is also real. See also rexmul . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses rexmul2.a φ A
rexmul2.b φ B *
rexmul2.c φ C *
rexmul2.1 φ 0 < C
rexmul2.2 φ A = B 𝑒 C
Assertion rexmul2 φ B

Proof

Step Hyp Ref Expression
1 rexmul2.a φ A
2 rexmul2.b φ B *
3 rexmul2.c φ C *
4 rexmul2.1 φ 0 < C
5 rexmul2.2 φ A = B 𝑒 C
6 5 adantr φ B = +∞ A = B 𝑒 C
7 simpr φ B = +∞ B = +∞
8 7 oveq1d φ B = +∞ B 𝑒 C = +∞ 𝑒 C
9 xmulpnf2 C * 0 < C +∞ 𝑒 C = +∞
10 3 4 9 syl2anc φ +∞ 𝑒 C = +∞
11 10 adantr φ B = +∞ +∞ 𝑒 C = +∞
12 6 8 11 3eqtrd φ B = +∞ A = +∞
13 1 renepnfd φ A +∞
14 13 adantr φ B = +∞ A +∞
15 14 neneqd φ B = +∞ ¬ A = +∞
16 12 15 pm2.65da φ ¬ B = +∞
17 5 adantr φ B = −∞ A = B 𝑒 C
18 simpr φ B = −∞ B = −∞
19 18 oveq1d φ B = −∞ B 𝑒 C = −∞ 𝑒 C
20 xmulmnf2 C * 0 < C −∞ 𝑒 C = −∞
21 3 4 20 syl2anc φ −∞ 𝑒 C = −∞
22 21 adantr φ B = −∞ −∞ 𝑒 C = −∞
23 17 19 22 3eqtrd φ B = −∞ A = −∞
24 1 renemnfd φ A −∞
25 24 adantr φ B = −∞ A −∞
26 25 neneqd φ B = −∞ ¬ A = −∞
27 23 26 pm2.65da φ ¬ B = −∞
28 elxr B * B B = +∞ B = −∞
29 2 28 sylib φ B B = +∞ B = −∞
30 16 27 29 ecase23d φ B