Metamath Proof Explorer


Theorem xrinfm

Description: The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Assertion xrinfm sup**<=−∞

Proof

Step Hyp Ref Expression
1 ssid **
2 mnfxr −∞*
3 infxrmnf **−∞*sup**<=−∞
4 1 2 3 mp2an sup**<=−∞