Metamath Proof Explorer


Theorem xrinfm

Description: The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Assertion xrinfm inf ( ℝ* , ℝ* , < ) = -∞

Proof

Step Hyp Ref Expression
1 ssid * ⊆ ℝ*
2 mnfxr -∞ ∈ ℝ*
3 infxrmnf ( ( ℝ* ⊆ ℝ* ∧ -∞ ∈ ℝ* ) → inf ( ℝ* , ℝ* , < ) = -∞ )
4 1 2 3 mp2an inf ( ℝ* , ℝ* , < ) = -∞