Metamath Proof Explorer


Theorem le2halvesd

Description: A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017)

Ref Expression
Hypotheses le2halvesd.1 φA
le2halvesd.2 φB
le2halvesd.3 φC
le2halvesd.4 φAC2
le2halvesd.5 φBC2
Assertion le2halvesd φA+BC

Proof

Step Hyp Ref Expression
1 le2halvesd.1 φA
2 le2halvesd.2 φB
3 le2halvesd.3 φC
4 le2halvesd.4 φAC2
5 le2halvesd.5 φBC2
6 3 rehalfcld φC2
7 1 2 6 6 4 5 le2addd φA+BC2+C2
8 3 recnd φC
9 8 2halvesd φC2+C2=C
10 7 9 breqtrd φA+BC