Metamath Proof Explorer


Theorem xraddge02

Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016)

Ref Expression
Assertion xraddge02 A*B*0BAA+𝑒B

Proof

Step Hyp Ref Expression
1 xrleid A*AA
2 1 adantr A*B*AA
3 simpl A*B*A*
4 0xr 0*
5 3 4 jctir A*B*A*0*
6 xle2add A*0*A*B*AA0BA+𝑒0A+𝑒B
7 5 6 mpancom A*B*AA0BA+𝑒0A+𝑒B
8 2 7 mpand A*B*0BA+𝑒0A+𝑒B
9 xaddrid A*A+𝑒0=A
10 9 breq1d A*A+𝑒0A+𝑒BAA+𝑒B
11 10 adantr A*B*A+𝑒0A+𝑒BAA+𝑒B
12 8 11 sylibd A*B*0BAA+𝑒B