Metamath Proof Explorer


Theorem infxrmnf

Description: The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Assertion infxrmnf A*−∞AsupA*<=−∞

Proof

Step Hyp Ref Expression
1 infxrlb A*−∞AsupA*<−∞
2 infxrcl A*supA*<*
3 2 adantr A*−∞AsupA*<*
4 xlemnf supA*<*supA*<−∞supA*<=−∞
5 3 4 syl A*−∞AsupA*<−∞supA*<=−∞
6 1 5 mpbid A*−∞AsupA*<=−∞