Metamath Proof Explorer


Theorem xrinf0

Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion xrinf0 sup*<=+∞

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 a1i <Or*
3 pnfxr +∞*
4 3 a1i +∞*
5 noel ¬y
6 5 pm2.21i y¬y<+∞
7 6 adantl y¬y<+∞
8 pnfnlt y*¬+∞<y
9 8 pm2.21d y*+∞<yzz<y
10 9 imp y*+∞<yzz<y
11 10 adantl y*+∞<yzz<y
12 2 4 7 11 eqinfd sup*<=+∞
13 12 mptru sup*<=+∞