Metamath Proof Explorer


Theorem eqinfd

Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infexd.1 φROrA
eqinfd.2 φCA
eqinfd.3 φyB¬yRC
eqinfd.4 φyACRyzBzRy
Assertion eqinfd φsupBAR=C

Proof

Step Hyp Ref Expression
1 infexd.1 φROrA
2 eqinfd.2 φCA
3 eqinfd.3 φyB¬yRC
4 eqinfd.4 φyACRyzBzRy
5 3 ralrimiva φyB¬yRC
6 4 expr φyACRyzBzRy
7 6 ralrimiva φyACRyzBzRy
8 1 eqinf φCAyB¬yRCyACRyzBzRysupBAR=C
9 2 5 7 8 mp3and φsupBAR=C