Metamath Proof Explorer


Theorem infval

Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 φROrA
Assertion infval φsupBAR=ιxA|yB¬yRxyAxRyzBzRy

Proof

Step Hyp Ref Expression
1 infexd.1 φROrA
2 df-inf supBAR=supBAR-1
3 cnvso ROrAR-1OrA
4 1 3 sylib φR-1OrA
5 4 supval2 φsupBAR-1=ιxA|yB¬xR-1yyAyR-1xzByR-1z
6 vex xV
7 vex yV
8 6 7 brcnv xR-1yyRx
9 8 a1i φxR-1yyRx
10 9 notbid φ¬xR-1y¬yRx
11 10 ralbidv φyB¬xR-1yyB¬yRx
12 7 6 brcnv yR-1xxRy
13 12 a1i φyR-1xxRy
14 vex zV
15 7 14 brcnv yR-1zzRy
16 15 a1i φyR-1zzRy
17 16 rexbidv φzByR-1zzBzRy
18 13 17 imbi12d φyR-1xzByR-1zxRyzBzRy
19 18 ralbidv φyAyR-1xzByR-1zyAxRyzBzRy
20 11 19 anbi12d φyB¬xR-1yyAyR-1xzByR-1zyB¬yRxyAxRyzBzRy
21 20 riotabidv φιxA|yB¬xR-1yyAyR-1xzByR-1z=ιxA|yB¬yRxyAxRyzBzRy
22 5 21 eqtrd φsupBAR-1=ιxA|yB¬yRxyAxRyzBzRy
23 2 22 eqtrid φsupBAR=ιxA|yB¬yRxyAxRyzBzRy