Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | infexd.1 | |
|
Assertion | eqinf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infexd.1 | |
|
2 | df-inf | |
|
3 | cnvso | |
|
4 | 1 3 | sylib | |
5 | 4 | eqsup | |
6 | brcnvg | |
|
7 | 6 | bicomd | |
8 | 7 | elvd | |
9 | 8 | notbid | |
10 | 9 | ralbidv | |
11 | vex | |
|
12 | brcnvg | |
|
13 | 11 12 | mpan | |
14 | 13 | bicomd | |
15 | vex | |
|
16 | 11 15 | brcnv | |
17 | 16 | a1i | |
18 | 17 | bicomd | |
19 | 18 | rexbidv | |
20 | 14 19 | imbi12d | |
21 | 20 | ralbidv | |
22 | 10 21 | anbi12d | |
23 | 22 | pm5.32i | |
24 | 3anass | |
|
25 | 3anass | |
|
26 | 23 24 25 | 3bitr4i | |
27 | 26 | biimpi | |
28 | 5 27 | impel | |
29 | 2 28 | eqtrid | |
30 | 29 | ex | |