Metamath Proof Explorer


Theorem eqinf

Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 φROrA
Assertion eqinf φCAyB¬yRCyACRyzBzRysupBAR=C

Proof

Step Hyp Ref Expression
1 infexd.1 φROrA
2 df-inf supBAR=supBAR-1
3 cnvso ROrAR-1OrA
4 1 3 sylib φR-1OrA
5 4 eqsup φCAyB¬CR-1yyAyR-1CzByR-1zsupBAR-1=C
6 brcnvg CAyVCR-1yyRC
7 6 bicomd CAyVyRCCR-1y
8 7 elvd CAyRCCR-1y
9 8 notbid CA¬yRC¬CR-1y
10 9 ralbidv CAyB¬yRCyB¬CR-1y
11 vex yV
12 brcnvg yVCAyR-1CCRy
13 11 12 mpan CAyR-1CCRy
14 13 bicomd CACRyyR-1C
15 vex zV
16 11 15 brcnv yR-1zzRy
17 16 a1i CAyR-1zzRy
18 17 bicomd CAzRyyR-1z
19 18 rexbidv CAzBzRyzByR-1z
20 14 19 imbi12d CACRyzBzRyyR-1CzByR-1z
21 20 ralbidv CAyACRyzBzRyyAyR-1CzByR-1z
22 10 21 anbi12d CAyB¬yRCyACRyzBzRyyB¬CR-1yyAyR-1CzByR-1z
23 22 pm5.32i CAyB¬yRCyACRyzBzRyCAyB¬CR-1yyAyR-1CzByR-1z
24 3anass CAyB¬yRCyACRyzBzRyCAyB¬yRCyACRyzBzRy
25 3anass CAyB¬CR-1yyAyR-1CzByR-1zCAyB¬CR-1yyAyR-1CzByR-1z
26 23 24 25 3bitr4i CAyB¬yRCyACRyzBzRyCAyB¬CR-1yyAyR-1CzByR-1z
27 26 biimpi CAyB¬yRCyACRyzBzRyCAyB¬CR-1yyAyR-1CzByR-1z
28 5 27 impel φCAyB¬yRCyACRyzBzRysupBAR-1=C
29 2 28 eqtrid φCAyB¬yRCyACRyzBzRysupBAR=C
30 29 ex φCAyB¬yRCyACRyzBzRysupBAR=C