Metamath Proof Explorer


Theorem eqinfd

Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infexd.1 ( 𝜑𝑅 Or 𝐴 )
eqinfd.2 ( 𝜑𝐶𝐴 )
eqinfd.3 ( ( 𝜑𝑦𝐵 ) → ¬ 𝑦 𝑅 𝐶 )
eqinfd.4 ( ( 𝜑 ∧ ( 𝑦𝐴𝐶 𝑅 𝑦 ) ) → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 )
Assertion eqinfd ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 infexd.1 ( 𝜑𝑅 Or 𝐴 )
2 eqinfd.2 ( 𝜑𝐶𝐴 )
3 eqinfd.3 ( ( 𝜑𝑦𝐵 ) → ¬ 𝑦 𝑅 𝐶 )
4 eqinfd.4 ( ( 𝜑 ∧ ( 𝑦𝐴𝐶 𝑅 𝑦 ) ) → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 )
5 3 ralrimiva ( 𝜑 → ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝐶 )
6 4 expr ( ( 𝜑𝑦𝐴 ) → ( 𝐶 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) )
7 6 ralrimiva ( 𝜑 → ∀ 𝑦𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) )
8 1 eqinf ( 𝜑 → ( ( 𝐶𝐴 ∧ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) )
9 2 5 7 8 mp3and ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 )