| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
⊢ 𝐸 = ( ℂfld ↾s 𝑒 ) |
| 3 |
|
constrextdg2.2 |
⊢ 𝐹 = ( ℂfld ↾s 𝑓 ) |
| 4 |
|
constrextdg2.l |
⊢ < = { 〈 𝑓 , 𝑒 〉 ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) } |
| 5 |
|
constrextdg2.n |
⊢ ( 𝜑 → 𝑁 ∈ ω ) |
| 6 |
|
constrext2chnlem.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 7 |
|
constrext2chnlem.l |
⊢ 𝐿 = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) |
| 8 |
|
constrext2chnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ Constr ) |
| 9 |
|
2prm |
⊢ 2 ∈ ℙ |
| 10 |
9
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 2 ∈ ℙ ) |
| 11 |
7 6
|
oveq12i |
⊢ ( 𝐿 [:] 𝑄 ) = ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) |
| 12 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 13 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
| 14 |
|
eqid |
⊢ ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) |
| 15 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 16 |
15
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℂfld ∈ Field ) |
| 17 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 18 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 19 |
18
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 20 |
18
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 21 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
| 22 |
17 19 20 21
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
| 23 |
22
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
| 24 |
|
nnon |
⊢ ( 𝑚 ∈ ω → 𝑚 ∈ On ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ω ) → 𝑚 ∈ On ) |
| 26 |
1 25
|
constrsscn |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ω ) → ( 𝐶 ‘ 𝑚 ) ⊆ ℂ ) |
| 27 |
26
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝐴 ∈ ℂ ) |
| 28 |
27
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → { 𝐴 } ⊆ ℂ ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → { 𝐴 } ⊆ ℂ ) |
| 30 |
12 13 14 16 23 29
|
fldgenfldext |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂfld ↾s ℚ ) ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂfld ↾s ℚ ) ) |
| 32 |
|
extdgcl |
⊢ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂfld ↾s ℚ ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℕ0* ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℕ0* ) |
| 34 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) |
| 35 |
|
2z |
⊢ 2 ∈ ℤ |
| 36 |
35
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 2 ∈ ℤ ) |
| 37 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 𝑝 ∈ ℕ0 ) |
| 38 |
36 37
|
zexpcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 2 ↑ 𝑝 ) ∈ ℤ ) |
| 39 |
34 38
|
eqeltrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℤ ) |
| 40 |
39
|
zred |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ ) |
| 41 |
|
xnn0xr |
⊢ ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℕ0* → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ* ) |
| 42 |
31 32 41
|
3syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ* ) |
| 43 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) = ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) |
| 44 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) |
| 45 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( 𝑣 ‘ 0 ) = ℚ ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( 𝑣 ‘ 0 ) ) = ( ℂfld ↾s ℚ ) ) |
| 47 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) = ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → 𝑣 = ∅ ) |
| 49 |
48
|
fveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ( ∅ ‘ 0 ) ) |
| 50 |
|
0fv |
⊢ ( ∅ ‘ 0 ) = ∅ |
| 51 |
50
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( ∅ ‘ 0 ) = ∅ ) |
| 52 |
49 51
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ∅ ) |
| 53 |
45
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ℚ ) |
| 54 |
|
1nn |
⊢ 1 ∈ ℕ |
| 55 |
|
nnq |
⊢ ( 1 ∈ ℕ → 1 ∈ ℚ ) |
| 56 |
54 55
|
ax-mp |
⊢ 1 ∈ ℚ |
| 57 |
56
|
ne0ii |
⊢ ℚ ≠ ∅ |
| 58 |
57
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ℚ ≠ ∅ ) |
| 59 |
53 58
|
eqnetrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) ≠ ∅ ) |
| 60 |
59
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ¬ ( 𝑣 ‘ 0 ) = ∅ ) |
| 61 |
52 60
|
pm2.65da |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ¬ 𝑣 = ∅ ) |
| 62 |
61
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ≠ ∅ ) |
| 63 |
44 62
|
hashne0 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 64 |
2 3 4 44 16 46 47 63
|
fldext2chn |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ℚ ) ∧ ∃ 𝑝 ∈ ℕ0 ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) ) |
| 65 |
64
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ℚ ) ) |
| 66 |
|
fldextfld1 |
⊢ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ℚ ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ∈ Field ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ∈ Field ) |
| 68 |
44
|
chnwrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ) |
| 69 |
|
lswcl |
⊢ ( ( 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ∧ 𝑣 ≠ ∅ ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 70 |
68 62 69
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 71 |
17
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℂfld ∈ DivRing ) |
| 72 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
| 73 |
72
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → ℚ ⊆ ℂ ) |
| 74 |
73 28
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ℂ ) |
| 75 |
74
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ℂ ) |
| 76 |
12 71 75
|
fldgensdrg |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 77 |
13
|
qrngbas |
⊢ ℚ = ( Base ‘ ( ℂfld ↾s ℚ ) ) |
| 78 |
77 65
|
fldextsdrg |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ∈ ( SubDRing ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 79 |
43
|
sdrgss |
⊢ ( ℚ ∈ ( SubDRing ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 81 |
12
|
sdrgss |
⊢ ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 𝑣 ) ⊆ ℂ ) |
| 82 |
70 81
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ⊆ ℂ ) |
| 83 |
|
eqid |
⊢ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) = ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) |
| 84 |
83 12
|
ressbas2 |
⊢ ( ( lastS ‘ 𝑣 ) ⊆ ℂ → ( lastS ‘ 𝑣 ) = ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 85 |
82 84
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) = ( Base ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 86 |
80 85
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( lastS ‘ 𝑣 ) ) |
| 87 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 88 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 89 |
87 88
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝐴 ∈ ( lastS ‘ 𝑣 ) ) |
| 90 |
89
|
snssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → { 𝐴 } ⊆ ( lastS ‘ 𝑣 ) ) |
| 91 |
86 90
|
unssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 92 |
12 71 70 91
|
fldgenssp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) |
| 93 |
|
id |
⊢ ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ) |
| 94 |
83 93
|
subsdrg |
⊢ ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ↔ ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) ) |
| 95 |
94
|
biimpar |
⊢ ( ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 96 |
70 76 92 95
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ) ) |
| 97 |
43 67 96
|
sdrgfldext |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) |
| 98 |
70
|
elexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ∈ V ) |
| 99 |
|
ressabs |
⊢ ( ( ( lastS ‘ 𝑣 ) ∈ V ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) |
| 100 |
98 92 99
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) |
| 101 |
97 100
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) |
| 103 |
|
extdgcl |
⊢ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* ) |
| 104 |
102 103
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* ) |
| 105 |
|
xnn0xr |
⊢ ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* ) |
| 107 |
|
extdggt0 |
⊢ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) → 0 < ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) |
| 108 |
102 107
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 0 < ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) |
| 109 |
|
extdgmul |
⊢ ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) /FldExt ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ∧ ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂfld ↾s ℚ ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 110 |
101 30 109
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 111 |
110
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 112 |
|
xmulcom |
⊢ ( ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ* ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ·e ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) ) |
| 113 |
106 42 112
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ·e ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) ) |
| 114 |
111 113
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ·e ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) ) |
| 115 |
40 42 106 108 114
|
rexmul2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ ) |
| 116 |
|
extdggt0 |
⊢ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂfld ↾s ℚ ) → 0 < ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) |
| 117 |
31 116
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 0 < ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) |
| 118 |
33 115 117
|
xnn0nnd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℕ ) |
| 119 |
11 118
|
eqeltrid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 𝐿 [:] 𝑄 ) ∈ ℕ ) |
| 120 |
40 106 42 117 111
|
rexmul2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ ) |
| 121 |
104 120
|
xnn0nn0d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0 ) |
| 122 |
121
|
nn0zd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℤ ) |
| 123 |
118
|
nnnn0d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℕ0 ) |
| 124 |
123
|
nn0zd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℤ ) |
| 125 |
|
rexmul |
⊢ ( ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℝ ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 126 |
120 115 125
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 127 |
111 126
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) ) |
| 128 |
127
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) ) |
| 129 |
128 34
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( 2 ↑ 𝑝 ) ) |
| 130 |
|
dvds0lem |
⊢ ( ( ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℤ ∧ ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∈ ℤ ∧ ( 2 ↑ 𝑝 ) ∈ ℤ ) ∧ ( ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∥ ( 2 ↑ 𝑝 ) ) |
| 131 |
122 124 38 129 130
|
syl31anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂfld ↾s ℚ ) ) ∥ ( 2 ↑ 𝑝 ) ) |
| 132 |
11 131
|
eqbrtrid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) ) |
| 133 |
|
dvdsprmpweq |
⊢ ( ( 2 ∈ ℙ ∧ ( 𝐿 [:] 𝑄 ) ∈ ℕ ∧ 𝑝 ∈ ℕ0 ) → ( ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |
| 134 |
133
|
imp |
⊢ ( ( ( 2 ∈ ℙ ∧ ( 𝐿 [:] 𝑄 ) ∈ ℕ ∧ 𝑝 ∈ ℕ0 ) ∧ ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |
| 135 |
10 119 37 132 134
|
syl31anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |
| 136 |
64
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ∃ 𝑝 ∈ ℕ0 ( ( ℂfld ↾s ( lastS ‘ 𝑣 ) ) [:] ( ℂfld ↾s ℚ ) ) = ( 2 ↑ 𝑝 ) ) |
| 137 |
135 136
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |
| 138 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → 𝑚 ∈ ω ) |
| 139 |
1 2 3 4 138
|
constrextdg2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶 ‘ 𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) |
| 140 |
137 139
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |
| 141 |
1
|
isconstr |
⊢ ( 𝐴 ∈ Constr ↔ ∃ 𝑚 ∈ ω 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 142 |
8 141
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ω 𝐴 ∈ ( 𝐶 ‘ 𝑚 ) ) |
| 143 |
140 142
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |