Metamath Proof Explorer


Theorem constrext2chnlem

Description: Lemma for constrext2chn . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrextdg2.1 𝐸 = ( ℂflds 𝑒 )
constrextdg2.2 𝐹 = ( ℂflds 𝑓 )
constrextdg2.l < = { ⟨ 𝑓 , 𝑒 ⟩ ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) }
constrextdg2.n ( 𝜑𝑁 ∈ ω )
constrext2chnlem.q 𝑄 = ( ℂflds ℚ )
constrext2chnlem.l 𝐿 = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) )
constrext2chnlem.a ( 𝜑𝐴 ∈ Constr )
Assertion constrext2chnlem ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrextdg2.1 𝐸 = ( ℂflds 𝑒 )
3 constrextdg2.2 𝐹 = ( ℂflds 𝑓 )
4 constrextdg2.l < = { ⟨ 𝑓 , 𝑒 ⟩ ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) }
5 constrextdg2.n ( 𝜑𝑁 ∈ ω )
6 constrext2chnlem.q 𝑄 = ( ℂflds ℚ )
7 constrext2chnlem.l 𝐿 = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) )
8 constrext2chnlem.a ( 𝜑𝐴 ∈ Constr )
9 2prm 2 ∈ ℙ
10 9 a1i ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 2 ∈ ℙ )
11 7 6 oveq12i ( 𝐿 [:] 𝑄 ) = ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) )
12 cnfldbas ℂ = ( Base ‘ ℂfld )
13 eqid ( ℂflds ℚ ) = ( ℂflds ℚ )
14 eqid ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) )
15 cnfldfld fld ∈ Field
16 15 a1i ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℂfld ∈ Field )
17 cndrng fld ∈ DivRing
18 qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )
19 18 simpli ℚ ∈ ( SubRing ‘ ℂfld )
20 18 simpri ( ℂflds ℚ ) ∈ DivRing
21 issdrg ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing ) )
22 17 19 20 21 mpbir3an ℚ ∈ ( SubDRing ‘ ℂfld )
23 22 a1i ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ∈ ( SubDRing ‘ ℂfld ) )
24 nnon ( 𝑚 ∈ ω → 𝑚 ∈ On )
25 24 adantl ( ( 𝜑𝑚 ∈ ω ) → 𝑚 ∈ On )
26 1 25 constrsscn ( ( 𝜑𝑚 ∈ ω ) → ( 𝐶𝑚 ) ⊆ ℂ )
27 26 sselda ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → 𝐴 ∈ ℂ )
28 27 snssd ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → { 𝐴 } ⊆ ℂ )
29 28 ad2antrr ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → { 𝐴 } ⊆ ℂ )
30 12 13 14 16 23 29 fldgenfldext ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂflds ℚ ) )
31 30 ad2antrr ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂflds ℚ ) )
32 extdgcl ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂflds ℚ ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℕ0* )
33 31 32 syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℕ0* )
34 simpr ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) )
35 2z 2 ∈ ℤ
36 35 a1i ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 2 ∈ ℤ )
37 simplr ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 𝑝 ∈ ℕ0 )
38 36 37 zexpcld ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 2 ↑ 𝑝 ) ∈ ℤ )
39 34 38 eqeltrd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) ∈ ℤ )
40 39 zred ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ )
41 xnn0xr ( ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℕ0* → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ* )
42 31 32 41 3syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ* )
43 eqid ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) = ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) )
44 simplr ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) )
45 simprl ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( 𝑣 ‘ 0 ) = ℚ )
46 45 oveq2d ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( 𝑣 ‘ 0 ) ) = ( ℂflds ℚ ) )
47 eqidd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) = ( ℂflds ( lastS ‘ 𝑣 ) ) )
48 simpr ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → 𝑣 = ∅ )
49 48 fveq1d ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ( ∅ ‘ 0 ) )
50 0fv ( ∅ ‘ 0 ) = ∅
51 50 a1i ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( ∅ ‘ 0 ) = ∅ )
52 49 51 eqtrd ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ∅ )
53 45 adantr ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) = ℚ )
54 1nn 1 ∈ ℕ
55 nnq ( 1 ∈ ℕ → 1 ∈ ℚ )
56 54 55 ax-mp 1 ∈ ℚ
57 56 ne0ii ℚ ≠ ∅
58 57 a1i ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ℚ ≠ ∅ )
59 53 58 eqnetrd ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ( 𝑣 ‘ 0 ) ≠ ∅ )
60 59 neneqd ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑣 = ∅ ) → ¬ ( 𝑣 ‘ 0 ) = ∅ )
61 52 60 pm2.65da ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ¬ 𝑣 = ∅ )
62 61 neqned ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ≠ ∅ )
63 44 62 hashne0 ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) )
64 2 3 4 44 16 46 47 63 fldext2chn ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ℚ ) ∧ ∃ 𝑝 ∈ ℕ0 ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) )
65 64 simpld ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ℚ ) )
66 fldextfld1 ( ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ℚ ) → ( ℂflds ( lastS ‘ 𝑣 ) ) ∈ Field )
67 65 66 syl ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) ∈ Field )
68 44 chnwrd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) )
69 lswcl ( ( 𝑣 ∈ Word ( SubDRing ‘ ℂfld ) ∧ 𝑣 ≠ ∅ ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) )
70 68 62 69 syl2anc ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) )
71 17 a1i ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℂfld ∈ DivRing )
72 qsscn ℚ ⊆ ℂ
73 72 a1i ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → ℚ ⊆ ℂ )
74 73 28 unssd ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ℂ )
75 74 ad2antrr ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ℂ )
76 12 71 75 fldgensdrg ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) )
77 13 qrngbas ℚ = ( Base ‘ ( ℂflds ℚ ) )
78 77 65 fldextsdrg ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ∈ ( SubDRing ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
79 43 sdrgss ( ℚ ∈ ( SubDRing ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
80 78 79 syl ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
81 12 sdrgss ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 𝑣 ) ⊆ ℂ )
82 70 81 syl ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ⊆ ℂ )
83 eqid ( ℂflds ( lastS ‘ 𝑣 ) ) = ( ℂflds ( lastS ‘ 𝑣 ) )
84 83 12 ressbas2 ( ( lastS ‘ 𝑣 ) ⊆ ℂ → ( lastS ‘ 𝑣 ) = ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
85 82 84 syl ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) = ( Base ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
86 80 85 sseqtrrd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ℚ ⊆ ( lastS ‘ 𝑣 ) )
87 simprr ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) )
88 simpllr ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝐴 ∈ ( 𝐶𝑚 ) )
89 87 88 sseldd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → 𝐴 ∈ ( lastS ‘ 𝑣 ) )
90 89 snssd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → { 𝐴 } ⊆ ( lastS ‘ 𝑣 ) )
91 86 90 unssd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℚ ∪ { 𝐴 } ) ⊆ ( lastS ‘ 𝑣 ) )
92 12 71 70 91 fldgenssp ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) )
93 id ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) )
94 83 93 subsdrg ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) → ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) ↔ ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) )
95 94 biimpar ( ( ( lastS ‘ 𝑣 ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ℂfld ) ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
96 70 76 92 95 syl12anc ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ ( ℂflds ( lastS ‘ 𝑣 ) ) ) )
97 43 67 96 sdrgfldext ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ( ℂflds ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) )
98 70 elexd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( lastS ‘ 𝑣 ) ∈ V )
99 ressabs ( ( ( lastS ‘ 𝑣 ) ∈ V ∧ ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ⊆ ( lastS ‘ 𝑣 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) )
100 98 92 99 syl2anc ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) )
101 97 100 breqtrd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) )
102 101 ad2antrr ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) )
103 extdgcl ( ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* )
104 102 103 syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* )
105 xnn0xr ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0* → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* )
106 104 105 syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* )
107 extdggt0 ( ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) → 0 < ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) )
108 102 107 syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 0 < ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) )
109 extdgmul ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) /FldExt ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ∧ ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂflds ℚ ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
110 101 30 109 syl2anc ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
111 110 ad2antrr ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
112 xmulcom ( ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ* ∧ ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ* ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ·e ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) )
113 106 42 112 syl2anc ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ·e ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) )
114 111 113 eqtrd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ·e ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ) )
115 40 42 106 108 114 rexmul2 ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ )
116 extdggt0 ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) /FldExt ( ℂflds ℚ ) → 0 < ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) )
117 31 116 syl ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → 0 < ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) )
118 33 115 117 xnn0nnd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℕ )
119 11 118 eqeltrid ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 𝐿 [:] 𝑄 ) ∈ ℕ )
120 40 106 42 117 111 rexmul2 ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ )
121 104 120 xnn0nn0d ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℕ0 )
122 121 nn0zd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℤ )
123 118 nnnn0d ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℕ0 )
124 123 nn0zd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℤ )
125 rexmul ( ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℝ ∧ ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℝ ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
126 120 115 125 syl2anc ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ·e ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
127 111 126 eqtrd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) )
128 127 eqcomd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) )
129 128 34 eqtrd ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( 2 ↑ 𝑝 ) )
130 dvds0lem ( ( ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) ∈ ℤ ∧ ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∈ ℤ ∧ ( 2 ↑ 𝑝 ) ∈ ℤ ) ∧ ( ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) ) · ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∥ ( 2 ↑ 𝑝 ) )
131 122 124 38 129 130 syl31anc ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) [:] ( ℂflds ℚ ) ) ∥ ( 2 ↑ 𝑝 ) )
132 11 131 eqbrtrid ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) )
133 dvdsprmpweq ( ( 2 ∈ ℙ ∧ ( 𝐿 [:] 𝑄 ) ∈ ℕ ∧ 𝑝 ∈ ℕ0 ) → ( ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) )
134 133 imp ( ( ( 2 ∈ ℙ ∧ ( 𝐿 [:] 𝑄 ) ∈ ℕ ∧ 𝑝 ∈ ℕ0 ) ∧ ( 𝐿 [:] 𝑄 ) ∥ ( 2 ↑ 𝑝 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )
135 10 119 37 132 134 syl31anc ( ( ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) ∧ 𝑝 ∈ ℕ0 ) ∧ ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )
136 64 simprd ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ∃ 𝑝 ∈ ℕ0 ( ( ℂflds ( lastS ‘ 𝑣 ) ) [:] ( ℂflds ℚ ) ) = ( 2 ↑ 𝑝 ) )
137 135 136 r19.29a ( ( ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) ∧ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ) ∧ ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )
138 simplr ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → 𝑚 ∈ ω )
139 1 2 3 4 138 constrextdg2 ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → ∃ 𝑣 ∈ ( < Chain ( SubDRing ‘ ℂfld ) ) ( ( 𝑣 ‘ 0 ) = ℚ ∧ ( 𝐶𝑚 ) ⊆ ( lastS ‘ 𝑣 ) ) )
140 137 139 r19.29a ( ( ( 𝜑𝑚 ∈ ω ) ∧ 𝐴 ∈ ( 𝐶𝑚 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )
141 1 isconstr ( 𝐴 ∈ Constr ↔ ∃ 𝑚 ∈ ω 𝐴 ∈ ( 𝐶𝑚 ) )
142 8 141 sylib ( 𝜑 → ∃ 𝑚 ∈ ω 𝐴 ∈ ( 𝐶𝑚 ) )
143 140 142 r19.29a ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )