| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldext2chn.e |
⊢ 𝐸 = ( 𝑊 ↾s 𝑒 ) |
| 2 |
|
fldext2chn.f |
⊢ 𝐹 = ( 𝑊 ↾s 𝑓 ) |
| 3 |
|
fldext2chn.l |
⊢ < = { 〈 𝑓 , 𝑒 〉 ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) } |
| 4 |
|
fldext2chn.t |
⊢ ( 𝜑 → 𝑇 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) |
| 5 |
|
fldext2chn.w |
⊢ ( 𝜑 → 𝑊 ∈ Field ) |
| 6 |
|
fldext2chn.1 |
⊢ ( 𝜑 → ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) = 𝑄 ) |
| 7 |
|
fldext2chn.2 |
⊢ ( 𝜑 → ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) = 𝐿 ) |
| 8 |
|
fldext2chn.3 |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑇 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ∅ ) ) |
| 10 |
9
|
breq2d |
⊢ ( 𝑑 = ∅ → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ∅ ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( lastS ‘ 𝑑 ) = ( lastS ‘ ∅ ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑑 = ∅ → ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) = ( 𝑊 ↾s ( lastS ‘ ∅ ) ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑑 = ∅ → ( 𝑑 ‘ 0 ) = ( ∅ ‘ 0 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑑 = ∅ → ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) = ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) |
| 15 |
12 14
|
breq12d |
⊢ ( 𝑑 = ∅ → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊 ↾s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) ) |
| 16 |
12 14
|
oveq12d |
⊢ ( 𝑑 = ∅ → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑑 = ∅ → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑑 = ∅ → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 19 |
15 18
|
anbi12d |
⊢ ( 𝑑 = ∅ → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 20 |
10 19
|
imbi12d |
⊢ ( 𝑑 = ∅ → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑐 ) ) |
| 22 |
21
|
breq2d |
⊢ ( 𝑑 = 𝑐 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑐 ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑐 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) = ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) |
| 25 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) = ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 27 |
24 26
|
breq12d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) |
| 28 |
24 26
|
oveq12d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑑 = 𝑐 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑑 = 𝑐 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 31 |
27 30
|
anbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 32 |
22 31
|
imbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( lastS ‘ 𝑑 ) = ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) = ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ) |
| 37 |
|
fveq1 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 𝑑 ‘ 0 ) = ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) = ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) |
| 39 |
36 38
|
breq12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) ) |
| 40 |
36 38
|
oveq12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) ) |
| 41 |
40
|
eqeq1d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 42 |
41
|
rexbidv |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) |
| 45 |
44
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) |
| 46 |
42 45
|
bitrdi |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) |
| 47 |
39 46
|
anbi12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) ) |
| 48 |
34 47
|
imbi12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑑 = 𝑇 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑇 ) ) |
| 50 |
49
|
breq2d |
⊢ ( 𝑑 = 𝑇 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑇 ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑑 = 𝑇 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑇 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑑 = 𝑇 → ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) = ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) ) |
| 53 |
|
fveq1 |
⊢ ( 𝑑 = 𝑇 → ( 𝑑 ‘ 0 ) = ( 𝑇 ‘ 0 ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑑 = 𝑇 → ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) = ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) |
| 55 |
52 54
|
breq12d |
⊢ ( 𝑑 = 𝑇 → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) ) |
| 56 |
52 54
|
oveq12d |
⊢ ( 𝑑 = 𝑇 → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) ) |
| 57 |
56
|
eqeq1d |
⊢ ( 𝑑 = 𝑇 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 58 |
57
|
rexbidv |
⊢ ( 𝑑 = 𝑇 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 59 |
55 58
|
anbi12d |
⊢ ( 𝑑 = 𝑇 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 60 |
50 59
|
imbi12d |
⊢ ( 𝑑 = 𝑇 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊 ↾s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑇 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
| 61 |
|
0re |
⊢ 0 ∈ ℝ |
| 62 |
61
|
ltnri |
⊢ ¬ 0 < 0 |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → ¬ 0 < 0 ) |
| 64 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 65 |
64
|
breq2i |
⊢ ( 0 < ( ♯ ‘ ∅ ) ↔ 0 < 0 ) |
| 66 |
63 65
|
sylnibr |
⊢ ( 𝜑 → ¬ 0 < ( ♯ ‘ ∅ ) ) |
| 67 |
66
|
pm2.21d |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ∅ ) ) [:] ( 𝑊 ↾s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 68 |
5
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑊 ∈ Field ) |
| 69 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) |
| 70 |
|
fldsdrgfld |
⊢ ( ( 𝑊 ∈ Field ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑔 ) ∈ Field ) |
| 71 |
68 69 70
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊 ↾s 𝑔 ) ∈ Field ) |
| 72 |
|
fldextid |
⊢ ( ( 𝑊 ↾s 𝑔 ) ∈ Field → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s 𝑔 ) ) |
| 73 |
71 72
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s 𝑔 ) ) |
| 74 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) |
| 75 |
74
|
chnwrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ) |
| 77 |
|
lswccats1 |
⊢ ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
| 78 |
76 69 77
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
| 79 |
78
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) = ( 𝑊 ↾s 𝑔 ) ) |
| 80 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑐 = ∅ ) |
| 81 |
80
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ 〈“ 𝑔 ”〉 ) = ( ∅ ++ 〈“ 𝑔 ”〉 ) ) |
| 82 |
|
s0s1 |
⊢ 〈“ 𝑔 ”〉 = ( ∅ ++ 〈“ 𝑔 ”〉 ) |
| 83 |
81 82
|
eqtr4di |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ 〈“ 𝑔 ”〉 ) = 〈“ 𝑔 ”〉 ) |
| 84 |
83
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 〈“ 𝑔 ”〉 ‘ 0 ) ) |
| 85 |
|
s1fv |
⊢ ( 𝑔 ∈ ( SubDRing ‘ 𝑊 ) → ( 〈“ 𝑔 ”〉 ‘ 0 ) = 𝑔 ) |
| 86 |
69 85
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 〈“ 𝑔 ”〉 ‘ 0 ) = 𝑔 ) |
| 87 |
84 86
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = 𝑔 ) |
| 88 |
87
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 𝑊 ↾s 𝑔 ) ) |
| 89 |
73 79 88
|
3brtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) |
| 90 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 0 ) ) |
| 91 |
|
2cn |
⊢ 2 ∈ ℂ |
| 92 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
| 93 |
91 92
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
| 94 |
90 93
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = 1 ) |
| 95 |
94
|
eqeq2d |
⊢ ( 𝑚 = 0 → ( ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = 1 ) ) |
| 96 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 97 |
96
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 0 ∈ ℕ0 ) |
| 98 |
79 88
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s 𝑔 ) ) ) |
| 99 |
|
extdgid |
⊢ ( ( 𝑊 ↾s 𝑔 ) ∈ Field → ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s 𝑔 ) ) = 1 ) |
| 100 |
71 99
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s 𝑔 ) ) = 1 ) |
| 101 |
98 100
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = 1 ) |
| 102 |
95 97 101
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) |
| 103 |
89 102
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) |
| 104 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) |
| 105 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ≠ ∅ ) |
| 106 |
105
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ¬ 𝑐 = ∅ ) |
| 107 |
104 106
|
orcnd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) < 𝑔 ) |
| 108 |
75
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ) |
| 109 |
|
lswcl |
⊢ ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) ) |
| 110 |
108 105 109
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) ) |
| 111 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) |
| 112 |
1 2
|
breq12i |
⊢ ( 𝐸 /FldExt 𝐹 ↔ ( 𝑊 ↾s 𝑒 ) /FldExt ( 𝑊 ↾s 𝑓 ) ) |
| 113 |
1 2
|
oveq12i |
⊢ ( 𝐸 [:] 𝐹 ) = ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) |
| 114 |
113
|
eqeq1i |
⊢ ( ( 𝐸 [:] 𝐹 ) = 2 ↔ ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) = 2 ) |
| 115 |
112 114
|
anbi12i |
⊢ ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊 ↾s 𝑒 ) /FldExt ( 𝑊 ↾s 𝑓 ) ∧ ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) = 2 ) ) |
| 116 |
|
oveq2 |
⊢ ( 𝑒 = 𝑔 → ( 𝑊 ↾s 𝑒 ) = ( 𝑊 ↾s 𝑔 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑊 ↾s 𝑒 ) = ( 𝑊 ↾s 𝑔 ) ) |
| 118 |
|
oveq2 |
⊢ ( 𝑓 = ( lastS ‘ 𝑐 ) → ( 𝑊 ↾s 𝑓 ) = ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑊 ↾s 𝑓 ) = ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) |
| 120 |
117 119
|
breq12d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑊 ↾s 𝑒 ) /FldExt ( 𝑊 ↾s 𝑓 ) ↔ ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ) |
| 121 |
117 119
|
oveq12d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) = ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ) |
| 122 |
121
|
eqeq1d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) = 2 ↔ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) |
| 123 |
120 122
|
anbi12d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( ( 𝑊 ↾s 𝑒 ) /FldExt ( 𝑊 ↾s 𝑓 ) ∧ ( ( 𝑊 ↾s 𝑒 ) [:] ( 𝑊 ↾s 𝑓 ) ) = 2 ) ↔ ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) ) |
| 124 |
115 123
|
bitrid |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) ) |
| 125 |
124
|
ancoms |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑐 ) ∧ 𝑒 = 𝑔 ) → ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) ) |
| 126 |
125 3
|
brabga |
⊢ ( ( ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) ) |
| 127 |
110 111 126
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) ) |
| 128 |
107 127
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) |
| 129 |
128
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) |
| 130 |
|
hashgt0 |
⊢ ( ( 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) ) |
| 131 |
74 130
|
sylan |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) ) |
| 132 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 133 |
131 132
|
mpd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 134 |
133
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) |
| 135 |
|
oveq2 |
⊢ ( 𝑛 = 𝑜 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑜 ) ) |
| 136 |
135
|
eqeq2d |
⊢ ( 𝑛 = 𝑜 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) ) |
| 137 |
136
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑜 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) |
| 138 |
134 137
|
sylib |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑜 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) |
| 139 |
129 138
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) |
| 140 |
133
|
simpld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 141 |
|
fldexttr |
⊢ ( ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 142 |
139 140 141
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 143 |
108 111 77
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) = ( 𝑊 ↾s 𝑔 ) ) |
| 145 |
144 138
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) = ( 𝑊 ↾s 𝑔 ) ) |
| 146 |
111
|
s1cld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 〈“ 𝑔 ”〉 ∈ Word ( SubDRing ‘ 𝑊 ) ) |
| 147 |
131
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 0 < ( ♯ ‘ 𝑐 ) ) |
| 148 |
|
ccatfv0 |
⊢ ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 〈“ 𝑔 ”〉 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 0 < ( ♯ ‘ 𝑐 ) ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
| 149 |
108 146 147 148
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 151 |
150 138
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 152 |
142 145 151
|
3brtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) |
| 153 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑜 + 1 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
| 154 |
153
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑜 + 1 ) → ( ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) ) |
| 155 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑜 ∈ ℕ0 ) |
| 156 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 157 |
156
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 1 ∈ ℕ0 ) |
| 158 |
155 157
|
nn0addcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑜 + 1 ) ∈ ℕ0 ) |
| 159 |
144 150
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) |
| 160 |
140
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) |
| 161 |
|
extdgmul |
⊢ ( ( ( 𝑊 ↾s 𝑔 ) /FldExt ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ∧ ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) → ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) ) |
| 162 |
129 160 161
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) ) |
| 163 |
91
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℂ ) |
| 164 |
163 155
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℂ ) |
| 165 |
163 164
|
mulcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 · ( 2 ↑ 𝑜 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) ) |
| 166 |
128
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) = 2 ) |
| 167 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) |
| 168 |
166 167
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 ·e ( 2 ↑ 𝑜 ) ) ) |
| 169 |
|
2re |
⊢ 2 ∈ ℝ |
| 170 |
169
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℝ ) |
| 171 |
170 155
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℝ ) |
| 172 |
|
rexmul |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 ↑ 𝑜 ) ∈ ℝ ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
| 173 |
170 171 172
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
| 174 |
168 173
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
| 175 |
163 155
|
expp1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ ( 𝑜 + 1 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) ) |
| 176 |
165 174 175
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊 ↾s 𝑔 ) [:] ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
| 177 |
159 162 176
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
| 178 |
154 158 177
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) |
| 179 |
178 138
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) |
| 180 |
152 179
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) |
| 181 |
103 180
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) |
| 182 |
181
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊 ↾s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) → ( 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) → ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) /FldExt ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) [:] ( 𝑊 ↾s ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) ) |
| 183 |
20 32 48 60 4 67 182
|
chnind |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ 𝑇 ) → ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 184 |
8 183
|
mpd |
⊢ ( 𝜑 → ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) |
| 185 |
7 6
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ↔ 𝐿 /FldExt 𝑄 ) ) |
| 186 |
7 6
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 𝐿 [:] 𝑄 ) ) |
| 187 |
186
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |
| 188 |
187
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |
| 189 |
185 188
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊 ↾s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊 ↾s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( 𝐿 /FldExt 𝑄 ∧ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) ) |
| 190 |
184 189
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 /FldExt 𝑄 ∧ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |