Metamath Proof Explorer


Theorem fldext2chn

Description: In a non-empty chain T of quadratic field extensions, the degree of the final extension is always a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldext2chn.e 𝐸 = ( 𝑊s 𝑒 )
fldext2chn.f 𝐹 = ( 𝑊s 𝑓 )
fldext2chn.l < = { ⟨ 𝑓 , 𝑒 ⟩ ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) }
fldext2chn.t ( 𝜑𝑇 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) )
fldext2chn.w ( 𝜑𝑊 ∈ Field )
fldext2chn.1 ( 𝜑 → ( 𝑊s ( 𝑇 ‘ 0 ) ) = 𝑄 )
fldext2chn.2 ( 𝜑 → ( 𝑊s ( lastS ‘ 𝑇 ) ) = 𝐿 )
fldext2chn.3 ( 𝜑 → 0 < ( ♯ ‘ 𝑇 ) )
Assertion fldext2chn ( 𝜑 → ( 𝐿 /FldExt 𝑄 ∧ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 fldext2chn.e 𝐸 = ( 𝑊s 𝑒 )
2 fldext2chn.f 𝐹 = ( 𝑊s 𝑓 )
3 fldext2chn.l < = { ⟨ 𝑓 , 𝑒 ⟩ ∣ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) }
4 fldext2chn.t ( 𝜑𝑇 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) )
5 fldext2chn.w ( 𝜑𝑊 ∈ Field )
6 fldext2chn.1 ( 𝜑 → ( 𝑊s ( 𝑇 ‘ 0 ) ) = 𝑄 )
7 fldext2chn.2 ( 𝜑 → ( 𝑊s ( lastS ‘ 𝑇 ) ) = 𝐿 )
8 fldext2chn.3 ( 𝜑 → 0 < ( ♯ ‘ 𝑇 ) )
9 fveq2 ( 𝑑 = ∅ → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ∅ ) )
10 9 breq2d ( 𝑑 = ∅ → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ∅ ) ) )
11 fveq2 ( 𝑑 = ∅ → ( lastS ‘ 𝑑 ) = ( lastS ‘ ∅ ) )
12 11 oveq2d ( 𝑑 = ∅ → ( 𝑊s ( lastS ‘ 𝑑 ) ) = ( 𝑊s ( lastS ‘ ∅ ) ) )
13 fveq1 ( 𝑑 = ∅ → ( 𝑑 ‘ 0 ) = ( ∅ ‘ 0 ) )
14 13 oveq2d ( 𝑑 = ∅ → ( 𝑊s ( 𝑑 ‘ 0 ) ) = ( 𝑊s ( ∅ ‘ 0 ) ) )
15 12 14 breq12d ( 𝑑 = ∅ → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊s ( ∅ ‘ 0 ) ) ) )
16 12 14 oveq12d ( 𝑑 = ∅ → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) )
17 16 eqeq1d ( 𝑑 = ∅ → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
18 17 rexbidv ( 𝑑 = ∅ → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
19 15 18 anbi12d ( 𝑑 = ∅ → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
20 10 19 imbi12d ( 𝑑 = ∅ → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ∅ ) → ( ( 𝑊s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) )
21 fveq2 ( 𝑑 = 𝑐 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑐 ) )
22 21 breq2d ( 𝑑 = 𝑐 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑐 ) ) )
23 fveq2 ( 𝑑 = 𝑐 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑐 ) )
24 23 oveq2d ( 𝑑 = 𝑐 → ( 𝑊s ( lastS ‘ 𝑑 ) ) = ( 𝑊s ( lastS ‘ 𝑐 ) ) )
25 fveq1 ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) )
26 25 oveq2d ( 𝑑 = 𝑐 → ( 𝑊s ( 𝑑 ‘ 0 ) ) = ( 𝑊s ( 𝑐 ‘ 0 ) ) )
27 24 26 breq12d ( 𝑑 = 𝑐 → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ) )
28 24 26 oveq12d ( 𝑑 = 𝑐 → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) )
29 28 eqeq1d ( 𝑑 = 𝑐 → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
30 29 rexbidv ( 𝑑 = 𝑐 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
31 27 30 anbi12d ( 𝑑 = 𝑐 → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
32 22 31 imbi12d ( 𝑑 = 𝑐 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) )
33 fveq2 ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) )
34 33 breq2d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) )
35 fveq2 ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( lastS ‘ 𝑑 ) = ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) )
36 35 oveq2d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( 𝑊s ( lastS ‘ 𝑑 ) ) = ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) )
37 fveq1 ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( 𝑑 ‘ 0 ) = ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) )
38 37 oveq2d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( 𝑊s ( 𝑑 ‘ 0 ) ) = ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) )
39 36 38 breq12d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) )
40 36 38 oveq12d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) )
41 40 eqeq1d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
42 41 rexbidv ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
43 oveq2 ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) )
44 43 eqeq2d ( 𝑛 = 𝑚 → ( ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) )
45 44 cbvrexvw ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) )
46 42 45 bitrdi ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) )
47 39 46 anbi12d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) )
48 34 47 imbi12d ( 𝑑 = ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) ) )
49 fveq2 ( 𝑑 = 𝑇 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑇 ) )
50 49 breq2d ( 𝑑 = 𝑇 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑇 ) ) )
51 fveq2 ( 𝑑 = 𝑇 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑇 ) )
52 51 oveq2d ( 𝑑 = 𝑇 → ( 𝑊s ( lastS ‘ 𝑑 ) ) = ( 𝑊s ( lastS ‘ 𝑇 ) ) )
53 fveq1 ( 𝑑 = 𝑇 → ( 𝑑 ‘ 0 ) = ( 𝑇 ‘ 0 ) )
54 53 oveq2d ( 𝑑 = 𝑇 → ( 𝑊s ( 𝑑 ‘ 0 ) ) = ( 𝑊s ( 𝑇 ‘ 0 ) ) )
55 52 54 breq12d ( 𝑑 = 𝑇 → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ↔ ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ) )
56 52 54 oveq12d ( 𝑑 = 𝑇 → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) )
57 56 eqeq1d ( 𝑑 = 𝑇 → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
58 57 rexbidv ( 𝑑 = 𝑇 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
59 55 58 anbi12d ( 𝑑 = 𝑇 → ( ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
60 50 59 imbi12d ( 𝑑 = 𝑇 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( 𝑊s ( lastS ‘ 𝑑 ) ) /FldExt ( 𝑊s ( 𝑑 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑑 ) ) [:] ( 𝑊s ( 𝑑 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑇 ) → ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) )
61 0re 0 ∈ ℝ
62 61 ltnri ¬ 0 < 0
63 62 a1i ( 𝜑 → ¬ 0 < 0 )
64 hash0 ( ♯ ‘ ∅ ) = 0
65 64 breq2i ( 0 < ( ♯ ‘ ∅ ) ↔ 0 < 0 )
66 63 65 sylnibr ( 𝜑 → ¬ 0 < ( ♯ ‘ ∅ ) )
67 66 pm2.21d ( 𝜑 → ( 0 < ( ♯ ‘ ∅ ) → ( ( 𝑊s ( lastS ‘ ∅ ) ) /FldExt ( 𝑊s ( ∅ ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ∅ ) ) [:] ( 𝑊s ( ∅ ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
68 5 ad6antr ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → 𝑊 ∈ Field )
69 simp-5r ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → 𝑔 ∈ ( SubDRing ‘ 𝑊 ) )
70 fldsdrgfld ( ( 𝑊 ∈ Field ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( 𝑊s 𝑔 ) ∈ Field )
71 68 69 70 syl2anc ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊s 𝑔 ) ∈ Field )
72 fldextid ( ( 𝑊s 𝑔 ) ∈ Field → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s 𝑔 ) )
73 71 72 syl ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s 𝑔 ) )
74 simp-5r ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) → 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) )
75 74 chnwrd ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) )
76 75 adantr ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) )
77 lswccats1 ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) = 𝑔 )
78 76 69 77 syl2anc ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) = 𝑔 )
79 78 oveq2d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) = ( 𝑊s 𝑔 ) )
80 simpr ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → 𝑐 = ∅ )
81 80 oveq1d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) = ( ∅ ++ ⟨“ 𝑔 ”⟩ ) )
82 s0s1 ⟨“ 𝑔 ”⟩ = ( ∅ ++ ⟨“ 𝑔 ”⟩ )
83 81 82 eqtr4di ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) = ⟨“ 𝑔 ”⟩ )
84 83 fveq1d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) = ( ⟨“ 𝑔 ”⟩ ‘ 0 ) )
85 s1fv ( 𝑔 ∈ ( SubDRing ‘ 𝑊 ) → ( ⟨“ 𝑔 ”⟩ ‘ 0 ) = 𝑔 )
86 69 85 syl ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ⟨“ 𝑔 ”⟩ ‘ 0 ) = 𝑔 )
87 84 86 eqtrd ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) = 𝑔 )
88 87 oveq2d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) = ( 𝑊s 𝑔 ) )
89 73 79 88 3brtr4d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) )
90 oveq2 ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 0 ) )
91 2cn 2 ∈ ℂ
92 exp0 ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 )
93 91 92 ax-mp ( 2 ↑ 0 ) = 1
94 90 93 eqtrdi ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = 1 )
95 94 eqeq2d ( 𝑚 = 0 → ( ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = 1 ) )
96 0nn0 0 ∈ ℕ0
97 96 a1i ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → 0 ∈ ℕ0 )
98 79 88 oveq12d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( ( 𝑊s 𝑔 ) [:] ( 𝑊s 𝑔 ) ) )
99 extdgid ( ( 𝑊s 𝑔 ) ∈ Field → ( ( 𝑊s 𝑔 ) [:] ( 𝑊s 𝑔 ) ) = 1 )
100 71 99 syl ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊s 𝑔 ) [:] ( 𝑊s 𝑔 ) ) = 1 )
101 98 100 eqtrd ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = 1 )
102 95 97 101 rspcedvdw ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) )
103 89 102 jca ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) )
104 simp-6r ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) )
105 simpllr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ≠ ∅ )
106 105 neneqd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ¬ 𝑐 = ∅ )
107 104 106 orcnd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) < 𝑔 )
108 75 ad3antrrr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) )
109 lswcl ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) )
110 108 105 109 syl2anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) )
111 simp-7r ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑔 ∈ ( SubDRing ‘ 𝑊 ) )
112 1 2 breq12i ( 𝐸 /FldExt 𝐹 ↔ ( 𝑊s 𝑒 ) /FldExt ( 𝑊s 𝑓 ) )
113 1 2 oveq12i ( 𝐸 [:] 𝐹 ) = ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) )
114 113 eqeq1i ( ( 𝐸 [:] 𝐹 ) = 2 ↔ ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) ) = 2 )
115 112 114 anbi12i ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊s 𝑒 ) /FldExt ( 𝑊s 𝑓 ) ∧ ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) ) = 2 ) )
116 oveq2 ( 𝑒 = 𝑔 → ( 𝑊s 𝑒 ) = ( 𝑊s 𝑔 ) )
117 116 adantr ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑊s 𝑒 ) = ( 𝑊s 𝑔 ) )
118 oveq2 ( 𝑓 = ( lastS ‘ 𝑐 ) → ( 𝑊s 𝑓 ) = ( 𝑊s ( lastS ‘ 𝑐 ) ) )
119 118 adantl ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑊s 𝑓 ) = ( 𝑊s ( lastS ‘ 𝑐 ) ) )
120 117 119 breq12d ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑊s 𝑒 ) /FldExt ( 𝑊s 𝑓 ) ↔ ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ) )
121 117 119 oveq12d ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) ) = ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) )
122 121 eqeq1d ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) ) = 2 ↔ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) )
123 120 122 anbi12d ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( ( 𝑊s 𝑒 ) /FldExt ( 𝑊s 𝑓 ) ∧ ( ( 𝑊s 𝑒 ) [:] ( 𝑊s 𝑓 ) ) = 2 ) ↔ ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) )
124 115 123 bitrid ( ( 𝑒 = 𝑔𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) )
125 124 ancoms ( ( 𝑓 = ( lastS ‘ 𝑐 ) ∧ 𝑒 = 𝑔 ) → ( ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) = 2 ) ↔ ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) )
126 125 3 brabga ( ( ( lastS ‘ 𝑐 ) ∈ ( SubDRing ‘ 𝑊 ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) )
127 110 111 126 syl2anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) ) )
128 107 127 mpbid ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 ) )
129 128 simpld ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) )
130 hashgt0 ( ( 𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) )
131 74 130 sylan ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) )
132 simpllr ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
133 131 132 mpd ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
134 133 simprd ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) )
135 oveq2 ( 𝑛 = 𝑜 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑜 ) )
136 135 eqeq2d ( 𝑛 = 𝑜 → ( ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) )
137 136 cbvrexvw ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑜 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) )
138 134 137 sylib ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑜 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) )
139 129 138 r19.29a ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) )
140 133 simpld ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) )
141 fldexttr ( ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ) → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) )
142 139 140 141 syl2anc ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) )
143 108 111 77 syl2anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) = 𝑔 )
144 143 oveq2d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) = ( 𝑊s 𝑔 ) )
145 144 138 r19.29a ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) = ( 𝑊s 𝑔 ) )
146 111 s1cld ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ⟨“ 𝑔 ”⟩ ∈ Word ( SubDRing ‘ 𝑊 ) )
147 131 ad2antrr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 0 < ( ♯ ‘ 𝑐 ) )
148 ccatfv0 ( ( 𝑐 ∈ Word ( SubDRing ‘ 𝑊 ) ∧ ⟨“ 𝑔 ”⟩ ∈ Word ( SubDRing ‘ 𝑊 ) ∧ 0 < ( ♯ ‘ 𝑐 ) ) → ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) = ( 𝑐 ‘ 0 ) )
149 108 146 147 148 syl3anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) = ( 𝑐 ‘ 0 ) )
150 149 oveq2d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) = ( 𝑊s ( 𝑐 ‘ 0 ) ) )
151 150 138 r19.29a ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) = ( 𝑊s ( 𝑐 ‘ 0 ) ) )
152 142 145 151 3brtr4d ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) )
153 oveq2 ( 𝑚 = ( 𝑜 + 1 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝑜 + 1 ) ) )
154 153 eqeq2d ( 𝑚 = ( 𝑜 + 1 ) → ( ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) )
155 simplr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 𝑜 ∈ ℕ0 )
156 1nn0 1 ∈ ℕ0
157 156 a1i ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 1 ∈ ℕ0 )
158 155 157 nn0addcld ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑜 + 1 ) ∈ ℕ0 )
159 144 150 oveq12d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) )
160 140 ad2antrr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) )
161 extdgmul ( ( ( 𝑊s 𝑔 ) /FldExt ( 𝑊s ( lastS ‘ 𝑐 ) ) ∧ ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ) → ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) ) )
162 129 160 161 syl2anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) ) )
163 91 a1i ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℂ )
164 163 155 expcld ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℂ )
165 163 164 mulcomd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 · ( 2 ↑ 𝑜 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) )
166 128 simprd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) = 2 )
167 simpr ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) )
168 166 167 oveq12d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 ·e ( 2 ↑ 𝑜 ) ) )
169 2re 2 ∈ ℝ
170 169 a1i ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℝ )
171 170 155 reexpcld ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℝ )
172 rexmul ( ( 2 ∈ ℝ ∧ ( 2 ↑ 𝑜 ) ∈ ℝ ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) )
173 170 171 172 syl2anc ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) )
174 168 173 eqtrd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) )
175 163 155 expp1d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ ( 𝑜 + 1 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) )
176 165 174 175 3eqtr4d ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( ( 𝑊s 𝑔 ) [:] ( 𝑊s ( lastS ‘ 𝑐 ) ) ) ·e ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) )
177 159 162 176 3eqtrd ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) )
178 154 158 177 rspcedvdw ( ( ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑜 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) )
179 178 138 r19.29a ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) )
180 152 179 jca ( ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) )
181 103 180 pm2.61dane ( ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) )
182 181 ex ( ( ( ( ( 𝜑𝑐 ∈ ( < Chain ( SubDRing ‘ 𝑊 ) ) ) ∧ 𝑔 ∈ ( SubDRing ‘ 𝑊 ) ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( 𝑊s ( lastS ‘ 𝑐 ) ) /FldExt ( 𝑊s ( 𝑐 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑐 ) ) [:] ( 𝑊s ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) ) → ( 0 < ( ♯ ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) → ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) /FldExt ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ) ) [:] ( 𝑊s ( ( 𝑐 ++ ⟨“ 𝑔 ”⟩ ) ‘ 0 ) ) ) = ( 2 ↑ 𝑚 ) ) ) )
183 20 32 48 60 4 67 182 chnind ( 𝜑 → ( 0 < ( ♯ ‘ 𝑇 ) → ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ) )
184 8 183 mpd ( 𝜑 → ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) )
185 7 6 breq12d ( 𝜑 → ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ↔ 𝐿 /FldExt 𝑄 ) )
186 7 6 oveq12d ( 𝜑 → ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 𝐿 [:] 𝑄 ) )
187 186 eqeq1d ( 𝜑 → ( ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) )
188 187 rexbidv ( 𝜑 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) )
189 185 188 anbi12d ( 𝜑 → ( ( ( 𝑊s ( lastS ‘ 𝑇 ) ) /FldExt ( 𝑊s ( 𝑇 ‘ 0 ) ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( 𝑊s ( lastS ‘ 𝑇 ) ) [:] ( 𝑊s ( 𝑇 ‘ 0 ) ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( 𝐿 /FldExt 𝑄 ∧ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) )
190 184 189 mpbid ( 𝜑 → ( 𝐿 /FldExt 𝑄 ∧ ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) )