Step |
Hyp |
Ref |
Expression |
1 |
|
fldext2chn.l |
⊢ < = { 〈 𝑓 , 𝑒 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) = 2 ) } |
2 |
|
fldext2chn.t |
⊢ ( 𝜑 → 𝑇 ∈ ( < Chain Field ) ) |
3 |
|
fldext2chn.1 |
⊢ ( 𝜑 → ( 𝑇 ‘ 0 ) = 𝑄 ) |
4 |
|
fldext2chn.2 |
⊢ ( 𝜑 → ( lastS ‘ 𝑇 ) = 𝐹 ) |
5 |
|
fldext2chn.3 |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑇 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ∅ ) ) |
7 |
6
|
breq2d |
⊢ ( 𝑑 = ∅ → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ∅ ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( lastS ‘ 𝑑 ) = ( lastS ‘ ∅ ) ) |
9 |
|
fveq1 |
⊢ ( 𝑑 = ∅ → ( 𝑑 ‘ 0 ) = ( ∅ ‘ 0 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑑 = ∅ → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ↔ ( lastS ‘ ∅ ) /FldExt ( ∅ ‘ 0 ) ) ) |
11 |
8 9
|
oveq12d |
⊢ ( 𝑑 = ∅ → ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑑 = ∅ → ( ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑑 = ∅ → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
14 |
10 13
|
anbi12d |
⊢ ( 𝑑 = ∅ → ( ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( lastS ‘ ∅ ) /FldExt ( ∅ ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
15 |
7 14
|
imbi12d |
⊢ ( 𝑑 = ∅ → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ∅ ) → ( ( lastS ‘ ∅ ) /FldExt ( ∅ ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑐 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑑 = 𝑐 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑐 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑐 ) ) |
19 |
|
fveq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
20 |
18 19
|
breq12d |
⊢ ( 𝑑 = 𝑐 → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ↔ ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ) ) |
21 |
18 19
|
oveq12d |
⊢ ( 𝑑 = 𝑐 → ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑑 = 𝑐 → ( ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑑 = 𝑐 → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
25 |
17 24
|
imbi12d |
⊢ ( 𝑑 = 𝑐 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( lastS ‘ 𝑑 ) = ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) |
29 |
|
fveq1 |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( 𝑑 ‘ 0 ) = ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) |
30 |
28 29
|
breq12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ↔ ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) |
31 |
28 29
|
oveq12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) |
36 |
35
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) |
37 |
33 36
|
bitrdi |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) |
38 |
30 37
|
anbi12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) ) |
39 |
27 38
|
imbi12d |
⊢ ( 𝑑 = ( 𝑐 ++ 〈“ 𝑔 ”〉 ) → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑑 = 𝑇 → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑇 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑑 = 𝑇 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( ♯ ‘ 𝑇 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑑 = 𝑇 → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑇 ) ) |
43 |
|
fveq1 |
⊢ ( 𝑑 = 𝑇 → ( 𝑑 ‘ 0 ) = ( 𝑇 ‘ 0 ) ) |
44 |
42 43
|
breq12d |
⊢ ( 𝑑 = 𝑇 → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ↔ ( lastS ‘ 𝑇 ) /FldExt ( 𝑇 ‘ 0 ) ) ) |
45 |
42 43
|
oveq12d |
⊢ ( 𝑑 = 𝑇 → ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) ) |
46 |
45
|
eqeq1d |
⊢ ( 𝑑 = 𝑇 → ( ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
47 |
46
|
rexbidv |
⊢ ( 𝑑 = 𝑇 → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
48 |
44 47
|
anbi12d |
⊢ ( 𝑑 = 𝑇 → ( ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ↔ ( ( lastS ‘ 𝑇 ) /FldExt ( 𝑇 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
49 |
41 48
|
imbi12d |
⊢ ( 𝑑 = 𝑇 → ( ( 0 < ( ♯ ‘ 𝑑 ) → ( ( lastS ‘ 𝑑 ) /FldExt ( 𝑑 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑑 ) [:] ( 𝑑 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ↔ ( 0 < ( ♯ ‘ 𝑇 ) → ( ( lastS ‘ 𝑇 ) /FldExt ( 𝑇 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ) |
50 |
|
0re |
⊢ 0 ∈ ℝ |
51 |
50
|
ltnri |
⊢ ¬ 0 < 0 |
52 |
51
|
a1i |
⊢ ( 𝜑 → ¬ 0 < 0 ) |
53 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
54 |
53
|
breq2i |
⊢ ( 0 < ( ♯ ‘ ∅ ) ↔ 0 < 0 ) |
55 |
52 54
|
sylnibr |
⊢ ( 𝜑 → ¬ 0 < ( ♯ ‘ ∅ ) ) |
56 |
55
|
pm2.21d |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ ∅ ) → ( ( lastS ‘ ∅ ) /FldExt ( ∅ ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ ∅ ) [:] ( ∅ ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
57 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑔 ∈ Field ) |
58 |
|
fldextid |
⊢ ( 𝑔 ∈ Field → 𝑔 /FldExt 𝑔 ) |
59 |
57 58
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑔 /FldExt 𝑔 ) |
60 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → 𝑐 ∈ ( < Chain Field ) ) |
61 |
60
|
chnwrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → 𝑐 ∈ Word Field ) |
62 |
|
lswccats1 |
⊢ ( ( 𝑐 ∈ Word Field ∧ 𝑔 ∈ Field ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
63 |
61 57 62
|
syl2an2r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
64 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 𝑐 = ∅ ) |
65 |
64
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ 〈“ 𝑔 ”〉 ) = ( ∅ ++ 〈“ 𝑔 ”〉 ) ) |
66 |
|
s0s1 |
⊢ 〈“ 𝑔 ”〉 = ( ∅ ++ 〈“ 𝑔 ”〉 ) |
67 |
65 66
|
eqtr4di |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑐 ++ 〈“ 𝑔 ”〉 ) = 〈“ 𝑔 ”〉 ) |
68 |
67
|
fveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 〈“ 𝑔 ”〉 ‘ 0 ) ) |
69 |
|
s1fv |
⊢ ( 𝑔 ∈ Field → ( 〈“ 𝑔 ”〉 ‘ 0 ) = 𝑔 ) |
70 |
57 69
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 〈“ 𝑔 ”〉 ‘ 0 ) = 𝑔 ) |
71 |
68 70
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = 𝑔 ) |
72 |
59 63 71
|
3brtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) |
73 |
|
oveq2 |
⊢ ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 0 ) ) |
74 |
|
2cn |
⊢ 2 ∈ ℂ |
75 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
76 |
74 75
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
77 |
73 76
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( 2 ↑ 𝑚 ) = 1 ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑚 = 0 → ( ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = 1 ) ) |
79 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
80 |
79
|
a1i |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → 0 ∈ ℕ0 ) |
81 |
63 71
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 𝑔 [:] 𝑔 ) ) |
82 |
|
extdgid |
⊢ ( 𝑔 ∈ Field → ( 𝑔 [:] 𝑔 ) = 1 ) |
83 |
57 82
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( 𝑔 [:] 𝑔 ) = 1 ) |
84 |
81 83
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = 1 ) |
85 |
78 80 84
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) |
86 |
72 85
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 = ∅ ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) |
87 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) |
88 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ≠ ∅ ) |
89 |
88
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ¬ 𝑐 = ∅ ) |
90 |
87 89
|
orcnd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) < 𝑔 ) |
91 |
61
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 𝑐 ∈ Word Field ) |
92 |
|
lswcl |
⊢ ( ( 𝑐 ∈ Word Field ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ 𝑐 ) ∈ Field ) |
93 |
91 88 92
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) ∈ Field ) |
94 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 𝑔 ∈ Field ) |
95 |
|
breq12 |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑒 /FldExt 𝑓 ↔ 𝑔 /FldExt ( lastS ‘ 𝑐 ) ) ) |
96 |
|
oveq12 |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( 𝑒 [:] 𝑓 ) = ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ) |
97 |
96
|
eqeq1d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑒 [:] 𝑓 ) = 2 ↔ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) |
98 |
95 97
|
anbi12d |
⊢ ( ( 𝑒 = 𝑔 ∧ 𝑓 = ( lastS ‘ 𝑐 ) ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) = 2 ) ↔ ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) ) |
99 |
98
|
ancoms |
⊢ ( ( 𝑓 = ( lastS ‘ 𝑐 ) ∧ 𝑒 = 𝑔 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) = 2 ) ↔ ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) ) |
100 |
99 1
|
brabga |
⊢ ( ( ( lastS ‘ 𝑐 ) ∈ Field ∧ 𝑔 ∈ Field ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) ) |
101 |
93 94 100
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ 𝑐 ) < 𝑔 ↔ ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) ) |
102 |
90 101
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) ) |
103 |
102
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 𝑔 /FldExt ( lastS ‘ 𝑐 ) ) |
104 |
|
hashgt0 |
⊢ ( ( 𝑐 ∈ ( < Chain Field ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) ) |
105 |
60 104
|
sylan |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → 0 < ( ♯ ‘ 𝑐 ) ) |
106 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
107 |
105 106
|
mpd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
108 |
107
|
simprd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) |
109 |
|
oveq2 |
⊢ ( 𝑛 = 𝑜 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑜 ) ) |
110 |
109
|
eqeq2d |
⊢ ( 𝑛 = 𝑜 → ( ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) ) |
111 |
110
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑜 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) |
112 |
108 111
|
sylib |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑜 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) |
113 |
103 112
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → 𝑔 /FldExt ( lastS ‘ 𝑐 ) ) |
114 |
107
|
simpld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ) |
115 |
|
fldexttr |
⊢ ( ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ) → 𝑔 /FldExt ( 𝑐 ‘ 0 ) ) |
116 |
113 114 115
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → 𝑔 /FldExt ( 𝑐 ‘ 0 ) ) |
117 |
91 94 62
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
118 |
117 112
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) = 𝑔 ) |
119 |
94
|
s1cld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 〈“ 𝑔 ”〉 ∈ Word Field ) |
120 |
105
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 0 < ( ♯ ‘ 𝑐 ) ) |
121 |
|
ccatfv0 |
⊢ ( ( 𝑐 ∈ Word Field ∧ 〈“ 𝑔 ”〉 ∈ Word Field ∧ 0 < ( ♯ ‘ 𝑐 ) ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
122 |
91 119 120 121
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
123 |
122 112
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) = ( 𝑐 ‘ 0 ) ) |
124 |
116 118 123
|
3brtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) |
125 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑜 + 1 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
126 |
125
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑜 + 1 ) → ( ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ↔ ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) ) |
127 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 𝑜 ∈ ℕ0 ) |
128 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
129 |
128
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 1 ∈ ℕ0 ) |
130 |
127 129
|
nn0addcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑜 + 1 ) ∈ ℕ0 ) |
131 |
117 122
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 𝑔 [:] ( 𝑐 ‘ 0 ) ) ) |
132 |
114
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ) |
133 |
|
extdgmul |
⊢ ( ( 𝑔 /FldExt ( lastS ‘ 𝑐 ) ∧ ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ) → ( 𝑔 [:] ( 𝑐 ‘ 0 ) ) = ( ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ·e ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) ) |
134 |
103 132 133
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑔 [:] ( 𝑐 ‘ 0 ) ) = ( ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ·e ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) ) |
135 |
|
2cnd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℂ ) |
136 |
135 127
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℂ ) |
137 |
135 136
|
mulcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 · ( 2 ↑ 𝑜 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) ) |
138 |
102
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) = 2 ) |
139 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) |
140 |
138 139
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ·e ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) = ( 2 ·e ( 2 ↑ 𝑜 ) ) ) |
141 |
|
2re |
⊢ 2 ∈ ℝ |
142 |
141
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → 2 ∈ ℝ ) |
143 |
142 127
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ 𝑜 ) ∈ ℝ ) |
144 |
|
rexmul |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 ↑ 𝑜 ) ∈ ℝ ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
145 |
142 143 144
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ·e ( 2 ↑ 𝑜 ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
146 |
140 145
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ·e ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) = ( 2 · ( 2 ↑ 𝑜 ) ) ) |
147 |
135 127
|
expp1d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( 2 ↑ ( 𝑜 + 1 ) ) = ( ( 2 ↑ 𝑜 ) · 2 ) ) |
148 |
137 146 147
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( 𝑔 [:] ( lastS ‘ 𝑐 ) ) ·e ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
149 |
131 134 148
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ ( 𝑜 + 1 ) ) ) |
150 |
126 130 149
|
rspcedvdw |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) ∧ 𝑜 ∈ ℕ0 ) ∧ ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑜 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) |
151 |
150 112
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) |
152 |
124 151
|
jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) ∧ 𝑐 ≠ ∅ ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) |
153 |
86 152
|
pm2.61dane |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) ∧ 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) |
154 |
153
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( < Chain Field ) ) ∧ 𝑔 ∈ Field ) ∧ ( 𝑐 = ∅ ∨ ( lastS ‘ 𝑐 ) < 𝑔 ) ) ∧ ( 0 < ( ♯ ‘ 𝑐 ) → ( ( lastS ‘ 𝑐 ) /FldExt ( 𝑐 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑐 ) [:] ( 𝑐 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) → ( 0 < ( ♯ ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) → ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) /FldExt ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ∧ ∃ 𝑚 ∈ ℕ0 ( ( lastS ‘ ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ) [:] ( ( 𝑐 ++ 〈“ 𝑔 ”〉 ) ‘ 0 ) ) = ( 2 ↑ 𝑚 ) ) ) ) |
155 |
15 25 39 49 2 56 154
|
chnind |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ 𝑇 ) → ( ( lastS ‘ 𝑇 ) /FldExt ( 𝑇 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) ) |
156 |
5 155
|
mpd |
⊢ ( 𝜑 → ( ( lastS ‘ 𝑇 ) /FldExt ( 𝑇 ‘ 0 ) ∧ ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) ) |
157 |
156
|
simprd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ) |
158 |
4 3
|
oveq12d |
⊢ ( 𝜑 → ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 𝐹 [:] 𝑄 ) ) |
159 |
158
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ( 𝐹 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |
160 |
159
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ0 ( ( lastS ‘ 𝑇 ) [:] ( 𝑇 ‘ 0 ) ) = ( 2 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝐹 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) ) |
161 |
157 160
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐹 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |