Metamath Proof Explorer


Theorem fldext2chn

Description: In a non-empty tower T of quadratic field extensions, the degree of the extension of the first member by the last is a power of two. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses fldext2chn.l < ˙ = f e | e /FldExt f e .:. f = 2
fldext2chn.t φ T Chain Field < ˙
fldext2chn.1 φ T 0 = Q
fldext2chn.2 φ lastS T = F
fldext2chn.3 φ 0 < T
Assertion fldext2chn φ n 0 F .:. Q = 2 n

Proof

Step Hyp Ref Expression
1 fldext2chn.l < ˙ = f e | e /FldExt f e .:. f = 2
2 fldext2chn.t φ T Chain Field < ˙
3 fldext2chn.1 φ T 0 = Q
4 fldext2chn.2 φ lastS T = F
5 fldext2chn.3 φ 0 < T
6 fveq2 d = d =
7 6 breq2d d = 0 < d 0 <
8 fveq2 d = lastS d = lastS
9 fveq1 d = d 0 = 0
10 8 9 breq12d d = lastS d /FldExt d 0 lastS /FldExt 0
11 8 9 oveq12d d = lastS d .:. d 0 = lastS .:. 0
12 11 eqeq1d d = lastS d .:. d 0 = 2 n lastS .:. 0 = 2 n
13 12 rexbidv d = n 0 lastS d .:. d 0 = 2 n n 0 lastS .:. 0 = 2 n
14 10 13 anbi12d d = lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n lastS /FldExt 0 n 0 lastS .:. 0 = 2 n
15 7 14 imbi12d d = 0 < d lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n 0 < lastS /FldExt 0 n 0 lastS .:. 0 = 2 n
16 fveq2 d = c d = c
17 16 breq2d d = c 0 < d 0 < c
18 fveq2 d = c lastS d = lastS c
19 fveq1 d = c d 0 = c 0
20 18 19 breq12d d = c lastS d /FldExt d 0 lastS c /FldExt c 0
21 18 19 oveq12d d = c lastS d .:. d 0 = lastS c .:. c 0
22 21 eqeq1d d = c lastS d .:. d 0 = 2 n lastS c .:. c 0 = 2 n
23 22 rexbidv d = c n 0 lastS d .:. d 0 = 2 n n 0 lastS c .:. c 0 = 2 n
24 20 23 anbi12d d = c lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n
25 17 24 imbi12d d = c 0 < d lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n
26 fveq2 d = c ++ ⟨“ g ”⟩ d = c ++ ⟨“ g ”⟩
27 26 breq2d d = c ++ ⟨“ g ”⟩ 0 < d 0 < c ++ ⟨“ g ”⟩
28 fveq2 d = c ++ ⟨“ g ”⟩ lastS d = lastS c ++ ⟨“ g ”⟩
29 fveq1 d = c ++ ⟨“ g ”⟩ d 0 = c ++ ⟨“ g ”⟩ 0
30 28 29 breq12d d = c ++ ⟨“ g ”⟩ lastS d /FldExt d 0 lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0
31 28 29 oveq12d d = c ++ ⟨“ g ”⟩ lastS d .:. d 0 = lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0
32 31 eqeq1d d = c ++ ⟨“ g ”⟩ lastS d .:. d 0 = 2 n lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 n
33 32 rexbidv d = c ++ ⟨“ g ”⟩ n 0 lastS d .:. d 0 = 2 n n 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 n
34 oveq2 n = m 2 n = 2 m
35 34 eqeq2d n = m lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 n lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
36 35 cbvrexvw n 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 n m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
37 33 36 bitrdi d = c ++ ⟨“ g ”⟩ n 0 lastS d .:. d 0 = 2 n m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
38 30 37 anbi12d d = c ++ ⟨“ g ”⟩ lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
39 27 38 imbi12d d = c ++ ⟨“ g ”⟩ 0 < d lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n 0 < c ++ ⟨“ g ”⟩ lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
40 fveq2 d = T d = T
41 40 breq2d d = T 0 < d 0 < T
42 fveq2 d = T lastS d = lastS T
43 fveq1 d = T d 0 = T 0
44 42 43 breq12d d = T lastS d /FldExt d 0 lastS T /FldExt T 0
45 42 43 oveq12d d = T lastS d .:. d 0 = lastS T .:. T 0
46 45 eqeq1d d = T lastS d .:. d 0 = 2 n lastS T .:. T 0 = 2 n
47 46 rexbidv d = T n 0 lastS d .:. d 0 = 2 n n 0 lastS T .:. T 0 = 2 n
48 44 47 anbi12d d = T lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n lastS T /FldExt T 0 n 0 lastS T .:. T 0 = 2 n
49 41 48 imbi12d d = T 0 < d lastS d /FldExt d 0 n 0 lastS d .:. d 0 = 2 n 0 < T lastS T /FldExt T 0 n 0 lastS T .:. T 0 = 2 n
50 0re 0
51 50 ltnri ¬ 0 < 0
52 51 a1i φ ¬ 0 < 0
53 hash0 = 0
54 53 breq2i 0 < 0 < 0
55 52 54 sylnibr φ ¬ 0 <
56 55 pm2.21d φ 0 < lastS /FldExt 0 n 0 lastS .:. 0 = 2 n
57 simp-5r φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = g Field
58 fldextid g Field g /FldExt g
59 57 58 syl φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = g /FldExt g
60 simp-5r φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c Chain Field < ˙
61 60 chnwrd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c Word Field
62 lswccats1 c Word Field g Field lastS c ++ ⟨“ g ”⟩ = g
63 61 57 62 syl2an2r φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ = g
64 simpr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c =
65 64 oveq1d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ = ++ ⟨“ g ”⟩
66 s0s1 ⟨“ g ”⟩ = ++ ⟨“ g ”⟩
67 65 66 eqtr4di φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ = ⟨“ g ”⟩
68 67 fveq1d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ 0 = ⟨“ g ”⟩ 0
69 s1fv g Field ⟨“ g ”⟩ 0 = g
70 57 69 syl φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = ⟨“ g ”⟩ 0 = g
71 68 70 eqtrd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ 0 = g
72 59 63 71 3brtr4d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0
73 oveq2 m = 0 2 m = 2 0
74 2cn 2
75 exp0 2 2 0 = 1
76 74 75 ax-mp 2 0 = 1
77 73 76 eqtrdi m = 0 2 m = 1
78 77 eqeq2d m = 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 1
79 0nn0 0 0
80 79 a1i φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = 0 0
81 63 71 oveq12d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = g .:. g
82 extdgid g Field g .:. g = 1
83 57 82 syl φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = g .:. g = 1
84 81 83 eqtrd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 1
85 78 80 84 rspcedvdw φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
86 72 85 jca φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
87 simp-6r φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o c = lastS c < ˙ g
88 simpllr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o c
89 88 neneqd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o ¬ c =
90 87 89 orcnd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c < ˙ g
91 61 ad3antrrr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o c Word Field
92 lswcl c Word Field c lastS c Field
93 91 88 92 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c Field
94 simp-7r φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g Field
95 breq12 e = g f = lastS c e /FldExt f g /FldExt lastS c
96 oveq12 e = g f = lastS c e .:. f = g .:. lastS c
97 96 eqeq1d e = g f = lastS c e .:. f = 2 g .:. lastS c = 2
98 95 97 anbi12d e = g f = lastS c e /FldExt f e .:. f = 2 g /FldExt lastS c g .:. lastS c = 2
99 98 ancoms f = lastS c e = g e /FldExt f e .:. f = 2 g /FldExt lastS c g .:. lastS c = 2
100 99 1 brabga lastS c Field g Field lastS c < ˙ g g /FldExt lastS c g .:. lastS c = 2
101 93 94 100 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c < ˙ g g /FldExt lastS c g .:. lastS c = 2
102 90 101 mpbid φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g /FldExt lastS c g .:. lastS c = 2
103 102 simpld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g /FldExt lastS c
104 hashgt0 c Chain Field < ˙ c 0 < c
105 60 104 sylan φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c 0 < c
106 simpllr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n
107 105 106 mpd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n
108 107 simprd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c n 0 lastS c .:. c 0 = 2 n
109 oveq2 n = o 2 n = 2 o
110 109 eqeq2d n = o lastS c .:. c 0 = 2 n lastS c .:. c 0 = 2 o
111 110 cbvrexvw n 0 lastS c .:. c 0 = 2 n o 0 lastS c .:. c 0 = 2 o
112 108 111 sylib φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o
113 103 112 r19.29a φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c g /FldExt lastS c
114 107 simpld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c lastS c /FldExt c 0
115 fldexttr g /FldExt lastS c lastS c /FldExt c 0 g /FldExt c 0
116 113 114 115 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c g /FldExt c 0
117 91 94 62 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c ++ ⟨“ g ”⟩ = g
118 117 112 r19.29a φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c lastS c ++ ⟨“ g ”⟩ = g
119 94 s1cld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o ⟨“ g ”⟩ Word Field
120 105 ad2antrr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 0 < c
121 ccatfv0 c Word Field ⟨“ g ”⟩ Word Field 0 < c c ++ ⟨“ g ”⟩ 0 = c 0
122 91 119 120 121 syl3anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o c ++ ⟨“ g ”⟩ 0 = c 0
123 122 112 r19.29a φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c c ++ ⟨“ g ”⟩ 0 = c 0
124 116 118 123 3brtr4d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0
125 oveq2 m = o + 1 2 m = 2 o + 1
126 125 eqeq2d m = o + 1 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 o + 1
127 simplr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o o 0
128 1nn0 1 0
129 128 a1i φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 1 0
130 127 129 nn0addcld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o o + 1 0
131 117 122 oveq12d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = g .:. c 0
132 114 ad2antrr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c /FldExt c 0
133 extdgmul g /FldExt lastS c lastS c /FldExt c 0 g .:. c 0 = g : lastS c 𝑒 lastS c : c 0
134 103 132 133 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g .:. c 0 = g : lastS c 𝑒 lastS c : c 0
135 2cnd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2
136 135 127 expcld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2 o
137 135 136 mulcomd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2 2 o = 2 o 2
138 102 simprd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g .:. lastS c = 2
139 simpr φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c .:. c 0 = 2 o
140 138 139 oveq12d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g : lastS c 𝑒 lastS c : c 0 = 2 𝑒 2 o
141 2re 2
142 141 a1i φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2
143 142 127 reexpcld φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2 o
144 rexmul 2 2 o 2 𝑒 2 o = 2 2 o
145 142 143 144 syl2anc φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2 𝑒 2 o = 2 2 o
146 140 145 eqtrd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g : lastS c 𝑒 lastS c : c 0 = 2 2 o
147 135 127 expp1d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o 2 o + 1 = 2 o 2
148 137 146 147 3eqtr4d φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o g : lastS c 𝑒 lastS c : c 0 = 2 o + 1
149 131 134 148 3eqtrd φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 o + 1
150 126 130 149 rspcedvdw φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 lastS c .:. c 0 = 2 o m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
151 150 112 r19.29a φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
152 124 151 jca φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
153 86 152 pm2.61dane φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
154 153 ex φ c Chain Field < ˙ g Field c = lastS c < ˙ g 0 < c lastS c /FldExt c 0 n 0 lastS c .:. c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ lastS c ++ ⟨“ g ”⟩ /FldExt c ++ ⟨“ g ”⟩ 0 m 0 lastS c ++ ⟨“ g ”⟩ .:. c ++ ⟨“ g ”⟩ 0 = 2 m
155 15 25 39 49 2 56 154 chnind φ 0 < T lastS T /FldExt T 0 n 0 lastS T .:. T 0 = 2 n
156 5 155 mpd φ lastS T /FldExt T 0 n 0 lastS T .:. T 0 = 2 n
157 156 simprd φ n 0 lastS T .:. T 0 = 2 n
158 4 3 oveq12d φ lastS T .:. T 0 = F .:. Q
159 158 eqeq1d φ lastS T .:. T 0 = 2 n F .:. Q = 2 n
160 159 rexbidv φ n 0 lastS T .:. T 0 = 2 n n 0 F .:. Q = 2 n
161 157 160 mpbid φ n 0 F .:. Q = 2 n