Metamath Proof Explorer


Theorem fldext2chn

Description: In a non-empty chain T of quadratic field extensions, the degree of the final extension is always a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldext2chn.e E = W 𝑠 e
fldext2chn.f F = W 𝑠 f
fldext2chn.l < ˙ = f e | E /FldExt F E .:. F = 2
fldext2chn.t φ T Chain SubDRing W < ˙
fldext2chn.w φ W Field
fldext2chn.1 φ W 𝑠 T 0 = Q
fldext2chn.2 φ W 𝑠 lastS T = L
fldext2chn.3 φ 0 < T
Assertion fldext2chn φ L /FldExt Q n 0 L .:. Q = 2 n

Proof

Step Hyp Ref Expression
1 fldext2chn.e E = W 𝑠 e
2 fldext2chn.f F = W 𝑠 f
3 fldext2chn.l < ˙ = f e | E /FldExt F E .:. F = 2
4 fldext2chn.t φ T Chain SubDRing W < ˙
5 fldext2chn.w φ W Field
6 fldext2chn.1 φ W 𝑠 T 0 = Q
7 fldext2chn.2 φ W 𝑠 lastS T = L
8 fldext2chn.3 φ 0 < T
9 fveq2 d = d =
10 9 breq2d d = 0 < d 0 <
11 fveq2 d = lastS d = lastS
12 11 oveq2d d = W 𝑠 lastS d = W 𝑠 lastS
13 fveq1 d = d 0 = 0
14 13 oveq2d d = W 𝑠 d 0 = W 𝑠 0
15 12 14 breq12d d = W 𝑠 lastS d /FldExt W 𝑠 d 0 W 𝑠 lastS /FldExt W 𝑠 0
16 12 14 oveq12d d = W 𝑠 lastS d .:. W 𝑠 d 0 = W 𝑠 lastS .:. W 𝑠 0
17 16 eqeq1d d = W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS .:. W 𝑠 0 = 2 n
18 17 rexbidv d = n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n n 0 W 𝑠 lastS .:. W 𝑠 0 = 2 n
19 15 18 anbi12d d = W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS /FldExt W 𝑠 0 n 0 W 𝑠 lastS .:. W 𝑠 0 = 2 n
20 10 19 imbi12d d = 0 < d W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n 0 < W 𝑠 lastS /FldExt W 𝑠 0 n 0 W 𝑠 lastS .:. W 𝑠 0 = 2 n
21 fveq2 d = c d = c
22 21 breq2d d = c 0 < d 0 < c
23 fveq2 d = c lastS d = lastS c
24 23 oveq2d d = c W 𝑠 lastS d = W 𝑠 lastS c
25 fveq1 d = c d 0 = c 0
26 25 oveq2d d = c W 𝑠 d 0 = W 𝑠 c 0
27 24 26 breq12d d = c W 𝑠 lastS d /FldExt W 𝑠 d 0 W 𝑠 lastS c /FldExt W 𝑠 c 0
28 24 26 oveq12d d = c W 𝑠 lastS d .:. W 𝑠 d 0 = W 𝑠 lastS c .:. W 𝑠 c 0
29 28 eqeq1d d = c W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
30 29 rexbidv d = c n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
31 27 30 anbi12d d = c W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
32 22 31 imbi12d d = c 0 < d W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
33 fveq2 d = c ++ ⟨“ g ”⟩ d = c ++ ⟨“ g ”⟩
34 33 breq2d d = c ++ ⟨“ g ”⟩ 0 < d 0 < c ++ ⟨“ g ”⟩
35 fveq2 d = c ++ ⟨“ g ”⟩ lastS d = lastS c ++ ⟨“ g ”⟩
36 35 oveq2d d = c ++ ⟨“ g ”⟩ W 𝑠 lastS d = W 𝑠 lastS c ++ ⟨“ g ”⟩
37 fveq1 d = c ++ ⟨“ g ”⟩ d 0 = c ++ ⟨“ g ”⟩ 0
38 37 oveq2d d = c ++ ⟨“ g ”⟩ W 𝑠 d 0 = W 𝑠 c ++ ⟨“ g ”⟩ 0
39 36 38 breq12d d = c ++ ⟨“ g ”⟩ W 𝑠 lastS d /FldExt W 𝑠 d 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0
40 36 38 oveq12d d = c ++ ⟨“ g ”⟩ W 𝑠 lastS d .:. W 𝑠 d 0 = W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0
41 40 eqeq1d d = c ++ ⟨“ g ”⟩ W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 n
42 41 rexbidv d = c ++ ⟨“ g ”⟩ n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n n 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 n
43 oveq2 n = m 2 n = 2 m
44 43 eqeq2d n = m W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 n W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
45 44 cbvrexvw n 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 n m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
46 42 45 bitrdi d = c ++ ⟨“ g ”⟩ n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
47 39 46 anbi12d d = c ++ ⟨“ g ”⟩ W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
48 34 47 imbi12d d = c ++ ⟨“ g ”⟩ 0 < d W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n 0 < c ++ ⟨“ g ”⟩ W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
49 fveq2 d = T d = T
50 49 breq2d d = T 0 < d 0 < T
51 fveq2 d = T lastS d = lastS T
52 51 oveq2d d = T W 𝑠 lastS d = W 𝑠 lastS T
53 fveq1 d = T d 0 = T 0
54 53 oveq2d d = T W 𝑠 d 0 = W 𝑠 T 0
55 52 54 breq12d d = T W 𝑠 lastS d /FldExt W 𝑠 d 0 W 𝑠 lastS T /FldExt W 𝑠 T 0
56 52 54 oveq12d d = T W 𝑠 lastS d .:. W 𝑠 d 0 = W 𝑠 lastS T .:. W 𝑠 T 0
57 56 eqeq1d d = T W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
58 57 rexbidv d = T n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
59 55 58 anbi12d d = T W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n W 𝑠 lastS T /FldExt W 𝑠 T 0 n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
60 50 59 imbi12d d = T 0 < d W 𝑠 lastS d /FldExt W 𝑠 d 0 n 0 W 𝑠 lastS d .:. W 𝑠 d 0 = 2 n 0 < T W 𝑠 lastS T /FldExt W 𝑠 T 0 n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
61 0re 0
62 61 ltnri ¬ 0 < 0
63 62 a1i φ ¬ 0 < 0
64 hash0 = 0
65 64 breq2i 0 < 0 < 0
66 63 65 sylnibr φ ¬ 0 <
67 66 pm2.21d φ 0 < W 𝑠 lastS /FldExt W 𝑠 0 n 0 W 𝑠 lastS .:. W 𝑠 0 = 2 n
68 5 ad6antr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W Field
69 simp-5r φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = g SubDRing W
70 fldsdrgfld W Field g SubDRing W W 𝑠 g Field
71 68 69 70 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 g Field
72 fldextid W 𝑠 g Field W 𝑠 g /FldExt W 𝑠 g
73 71 72 syl φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 g /FldExt W 𝑠 g
74 simp-5r φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c Chain SubDRing W < ˙
75 74 chnwrd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c Word SubDRing W
76 75 adantr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c Word SubDRing W
77 lswccats1 c Word SubDRing W g SubDRing W lastS c ++ ⟨“ g ”⟩ = g
78 76 69 77 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = lastS c ++ ⟨“ g ”⟩ = g
79 78 oveq2d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 lastS c ++ ⟨“ g ”⟩ = W 𝑠 g
80 simpr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c =
81 80 oveq1d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ = ++ ⟨“ g ”⟩
82 s0s1 ⟨“ g ”⟩ = ++ ⟨“ g ”⟩
83 81 82 eqtr4di φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ = ⟨“ g ”⟩
84 83 fveq1d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ 0 = ⟨“ g ”⟩ 0
85 s1fv g SubDRing W ⟨“ g ”⟩ 0 = g
86 69 85 syl φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = ⟨“ g ”⟩ 0 = g
87 84 86 eqtrd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = c ++ ⟨“ g ”⟩ 0 = g
88 87 oveq2d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 c ++ ⟨“ g ”⟩ 0 = W 𝑠 g
89 73 79 88 3brtr4d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0
90 oveq2 m = 0 2 m = 2 0
91 2cn 2
92 exp0 2 2 0 = 1
93 91 92 ax-mp 2 0 = 1
94 90 93 eqtrdi m = 0 2 m = 1
95 94 eqeq2d m = 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 1
96 0nn0 0 0
97 96 a1i φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = 0 0
98 79 88 oveq12d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = W 𝑠 g .:. W 𝑠 g
99 extdgid W 𝑠 g Field W 𝑠 g .:. W 𝑠 g = 1
100 71 99 syl φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 g .:. W 𝑠 g = 1
101 98 100 eqtrd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 1
102 95 97 101 rspcedvdw φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
103 89 102 jca φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c = W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
104 simp-6r φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o c = lastS c < ˙ g
105 simpllr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o c
106 105 neneqd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o ¬ c =
107 104 106 orcnd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o lastS c < ˙ g
108 75 ad3antrrr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o c Word SubDRing W
109 lswcl c Word SubDRing W c lastS c SubDRing W
110 108 105 109 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o lastS c SubDRing W
111 simp-7r φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o g SubDRing W
112 1 2 breq12i E /FldExt F W 𝑠 e /FldExt W 𝑠 f
113 1 2 oveq12i E .:. F = W 𝑠 e .:. W 𝑠 f
114 113 eqeq1i E .:. F = 2 W 𝑠 e .:. W 𝑠 f = 2
115 112 114 anbi12i E /FldExt F E .:. F = 2 W 𝑠 e /FldExt W 𝑠 f W 𝑠 e .:. W 𝑠 f = 2
116 oveq2 e = g W 𝑠 e = W 𝑠 g
117 116 adantr e = g f = lastS c W 𝑠 e = W 𝑠 g
118 oveq2 f = lastS c W 𝑠 f = W 𝑠 lastS c
119 118 adantl e = g f = lastS c W 𝑠 f = W 𝑠 lastS c
120 117 119 breq12d e = g f = lastS c W 𝑠 e /FldExt W 𝑠 f W 𝑠 g /FldExt W 𝑠 lastS c
121 117 119 oveq12d e = g f = lastS c W 𝑠 e .:. W 𝑠 f = W 𝑠 g .:. W 𝑠 lastS c
122 121 eqeq1d e = g f = lastS c W 𝑠 e .:. W 𝑠 f = 2 W 𝑠 g .:. W 𝑠 lastS c = 2
123 120 122 anbi12d e = g f = lastS c W 𝑠 e /FldExt W 𝑠 f W 𝑠 e .:. W 𝑠 f = 2 W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
124 115 123 bitrid e = g f = lastS c E /FldExt F E .:. F = 2 W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
125 124 ancoms f = lastS c e = g E /FldExt F E .:. F = 2 W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
126 125 3 brabga lastS c SubDRing W g SubDRing W lastS c < ˙ g W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
127 110 111 126 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o lastS c < ˙ g W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
128 107 127 mpbid φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 g .:. W 𝑠 lastS c = 2
129 128 simpld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g /FldExt W 𝑠 lastS c
130 hashgt0 c Chain SubDRing W < ˙ c 0 < c
131 74 130 sylan φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c 0 < c
132 simpllr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
133 131 132 mpd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
134 133 simprd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n
135 oveq2 n = o 2 n = 2 o
136 135 eqeq2d n = o W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o
137 136 cbvrexvw n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o
138 134 137 sylib φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o
139 129 138 r19.29a φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 g /FldExt W 𝑠 lastS c
140 133 simpld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 lastS c /FldExt W 𝑠 c 0
141 fldexttr W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 lastS c /FldExt W 𝑠 c 0 W 𝑠 g /FldExt W 𝑠 c 0
142 139 140 141 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 g /FldExt W 𝑠 c 0
143 108 111 77 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o lastS c ++ ⟨“ g ”⟩ = g
144 143 oveq2d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 lastS c ++ ⟨“ g ”⟩ = W 𝑠 g
145 144 138 r19.29a φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 lastS c ++ ⟨“ g ”⟩ = W 𝑠 g
146 111 s1cld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o ⟨“ g ”⟩ Word SubDRing W
147 131 ad2antrr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 0 < c
148 ccatfv0 c Word SubDRing W ⟨“ g ”⟩ Word SubDRing W 0 < c c ++ ⟨“ g ”⟩ 0 = c 0
149 108 146 147 148 syl3anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o c ++ ⟨“ g ”⟩ 0 = c 0
150 149 oveq2d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 c ++ ⟨“ g ”⟩ 0 = W 𝑠 c 0
151 150 138 r19.29a φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 c ++ ⟨“ g ”⟩ 0 = W 𝑠 c 0
152 142 145 151 3brtr4d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0
153 oveq2 m = o + 1 2 m = 2 o + 1
154 153 eqeq2d m = o + 1 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 o + 1
155 simplr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o o 0
156 1nn0 1 0
157 156 a1i φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 1 0
158 155 157 nn0addcld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o o + 1 0
159 144 150 oveq12d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = W 𝑠 g .:. W 𝑠 c 0
160 140 ad2antrr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 lastS c /FldExt W 𝑠 c 0
161 extdgmul W 𝑠 g /FldExt W 𝑠 lastS c W 𝑠 lastS c /FldExt W 𝑠 c 0 W 𝑠 g .:. W 𝑠 c 0 = W 𝑠 g : W 𝑠 lastS c 𝑒 W 𝑠 lastS c : W 𝑠 c 0
162 129 160 161 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g .:. W 𝑠 c 0 = W 𝑠 g : W 𝑠 lastS c 𝑒 W 𝑠 lastS c : W 𝑠 c 0
163 91 a1i φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2
164 163 155 expcld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2 o
165 163 164 mulcomd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2 2 o = 2 o 2
166 128 simprd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g .:. W 𝑠 lastS c = 2
167 simpr φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o
168 166 167 oveq12d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g : W 𝑠 lastS c 𝑒 W 𝑠 lastS c : W 𝑠 c 0 = 2 𝑒 2 o
169 2re 2
170 169 a1i φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2
171 170 155 reexpcld φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2 o
172 rexmul 2 2 o 2 𝑒 2 o = 2 2 o
173 170 171 172 syl2anc φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2 𝑒 2 o = 2 2 o
174 168 173 eqtrd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g : W 𝑠 lastS c 𝑒 W 𝑠 lastS c : W 𝑠 c 0 = 2 2 o
175 163 155 expp1d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o 2 o + 1 = 2 o 2
176 165 174 175 3eqtr4d φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 g : W 𝑠 lastS c 𝑒 W 𝑠 lastS c : W 𝑠 c 0 = 2 o + 1
177 159 162 176 3eqtrd φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 o + 1
178 154 158 177 rspcedvdw φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c o 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 o m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
179 178 138 r19.29a φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
180 152 179 jca φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ c W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
181 103 180 pm2.61dane φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
182 181 ex φ c Chain SubDRing W < ˙ g SubDRing W c = lastS c < ˙ g 0 < c W 𝑠 lastS c /FldExt W 𝑠 c 0 n 0 W 𝑠 lastS c .:. W 𝑠 c 0 = 2 n 0 < c ++ ⟨“ g ”⟩ W 𝑠 lastS c ++ ⟨“ g ”⟩ /FldExt W 𝑠 c ++ ⟨“ g ”⟩ 0 m 0 W 𝑠 lastS c ++ ⟨“ g ”⟩ .:. W 𝑠 c ++ ⟨“ g ”⟩ 0 = 2 m
183 20 32 48 60 4 67 182 chnind φ 0 < T W 𝑠 lastS T /FldExt W 𝑠 T 0 n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
184 8 183 mpd φ W 𝑠 lastS T /FldExt W 𝑠 T 0 n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n
185 7 6 breq12d φ W 𝑠 lastS T /FldExt W 𝑠 T 0 L /FldExt Q
186 7 6 oveq12d φ W 𝑠 lastS T .:. W 𝑠 T 0 = L .:. Q
187 186 eqeq1d φ W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n L .:. Q = 2 n
188 187 rexbidv φ n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n n 0 L .:. Q = 2 n
189 185 188 anbi12d φ W 𝑠 lastS T /FldExt W 𝑠 T 0 n 0 W 𝑠 lastS T .:. W 𝑠 T 0 = 2 n L /FldExt Q n 0 L .:. Q = 2 n
190 184 189 mpbid φ L /FldExt Q n 0 L .:. Q = 2 n