| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldext2chn.e |
|- E = ( W |`s e ) |
| 2 |
|
fldext2chn.f |
|- F = ( W |`s f ) |
| 3 |
|
fldext2chn.l |
|- .< = { <. f , e >. | ( E /FldExt F /\ ( E [:] F ) = 2 ) } |
| 4 |
|
fldext2chn.t |
|- ( ph -> T e. ( .< Chain ( SubDRing ` W ) ) ) |
| 5 |
|
fldext2chn.w |
|- ( ph -> W e. Field ) |
| 6 |
|
fldext2chn.1 |
|- ( ph -> ( W |`s ( T ` 0 ) ) = Q ) |
| 7 |
|
fldext2chn.2 |
|- ( ph -> ( W |`s ( lastS ` T ) ) = L ) |
| 8 |
|
fldext2chn.3 |
|- ( ph -> 0 < ( # ` T ) ) |
| 9 |
|
fveq2 |
|- ( d = (/) -> ( # ` d ) = ( # ` (/) ) ) |
| 10 |
9
|
breq2d |
|- ( d = (/) -> ( 0 < ( # ` d ) <-> 0 < ( # ` (/) ) ) ) |
| 11 |
|
fveq2 |
|- ( d = (/) -> ( lastS ` d ) = ( lastS ` (/) ) ) |
| 12 |
11
|
oveq2d |
|- ( d = (/) -> ( W |`s ( lastS ` d ) ) = ( W |`s ( lastS ` (/) ) ) ) |
| 13 |
|
fveq1 |
|- ( d = (/) -> ( d ` 0 ) = ( (/) ` 0 ) ) |
| 14 |
13
|
oveq2d |
|- ( d = (/) -> ( W |`s ( d ` 0 ) ) = ( W |`s ( (/) ` 0 ) ) ) |
| 15 |
12 14
|
breq12d |
|- ( d = (/) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) <-> ( W |`s ( lastS ` (/) ) ) /FldExt ( W |`s ( (/) ` 0 ) ) ) ) |
| 16 |
12 14
|
oveq12d |
|- ( d = (/) -> ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( d = (/) -> ( ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 18 |
17
|
rexbidv |
|- ( d = (/) -> ( E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> E. n e. NN0 ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 19 |
15 18
|
anbi12d |
|- ( d = (/) -> ( ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) <-> ( ( W |`s ( lastS ` (/) ) ) /FldExt ( W |`s ( (/) ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 20 |
10 19
|
imbi12d |
|- ( d = (/) -> ( ( 0 < ( # ` d ) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) ) <-> ( 0 < ( # ` (/) ) -> ( ( W |`s ( lastS ` (/) ) ) /FldExt ( W |`s ( (/) ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) = ( 2 ^ n ) ) ) ) ) |
| 21 |
|
fveq2 |
|- ( d = c -> ( # ` d ) = ( # ` c ) ) |
| 22 |
21
|
breq2d |
|- ( d = c -> ( 0 < ( # ` d ) <-> 0 < ( # ` c ) ) ) |
| 23 |
|
fveq2 |
|- ( d = c -> ( lastS ` d ) = ( lastS ` c ) ) |
| 24 |
23
|
oveq2d |
|- ( d = c -> ( W |`s ( lastS ` d ) ) = ( W |`s ( lastS ` c ) ) ) |
| 25 |
|
fveq1 |
|- ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) |
| 26 |
25
|
oveq2d |
|- ( d = c -> ( W |`s ( d ` 0 ) ) = ( W |`s ( c ` 0 ) ) ) |
| 27 |
24 26
|
breq12d |
|- ( d = c -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) <-> ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) ) ) |
| 28 |
24 26
|
oveq12d |
|- ( d = c -> ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) |
| 29 |
28
|
eqeq1d |
|- ( d = c -> ( ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 30 |
29
|
rexbidv |
|- ( d = c -> ( E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 31 |
27 30
|
anbi12d |
|- ( d = c -> ( ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) <-> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 32 |
22 31
|
imbi12d |
|- ( d = c -> ( ( 0 < ( # ` d ) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) ) <-> ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) ) |
| 33 |
|
fveq2 |
|- ( d = ( c ++ <" g "> ) -> ( # ` d ) = ( # ` ( c ++ <" g "> ) ) ) |
| 34 |
33
|
breq2d |
|- ( d = ( c ++ <" g "> ) -> ( 0 < ( # ` d ) <-> 0 < ( # ` ( c ++ <" g "> ) ) ) ) |
| 35 |
|
fveq2 |
|- ( d = ( c ++ <" g "> ) -> ( lastS ` d ) = ( lastS ` ( c ++ <" g "> ) ) ) |
| 36 |
35
|
oveq2d |
|- ( d = ( c ++ <" g "> ) -> ( W |`s ( lastS ` d ) ) = ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) ) |
| 37 |
|
fveq1 |
|- ( d = ( c ++ <" g "> ) -> ( d ` 0 ) = ( ( c ++ <" g "> ) ` 0 ) ) |
| 38 |
37
|
oveq2d |
|- ( d = ( c ++ <" g "> ) -> ( W |`s ( d ` 0 ) ) = ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) |
| 39 |
36 38
|
breq12d |
|- ( d = ( c ++ <" g "> ) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) <-> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) ) |
| 40 |
36 38
|
oveq12d |
|- ( d = ( c ++ <" g "> ) -> ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) ) |
| 41 |
40
|
eqeq1d |
|- ( d = ( c ++ <" g "> ) -> ( ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 42 |
41
|
rexbidv |
|- ( d = ( c ++ <" g "> ) -> ( E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> E. n e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 43 |
|
oveq2 |
|- ( n = m -> ( 2 ^ n ) = ( 2 ^ m ) ) |
| 44 |
43
|
eqeq2d |
|- ( n = m -> ( ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) |
| 45 |
44
|
cbvrexvw |
|- ( E. n e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ n ) <-> E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) |
| 46 |
42 45
|
bitrdi |
|- ( d = ( c ++ <" g "> ) -> ( E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) |
| 47 |
39 46
|
anbi12d |
|- ( d = ( c ++ <" g "> ) -> ( ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) <-> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) ) |
| 48 |
34 47
|
imbi12d |
|- ( d = ( c ++ <" g "> ) -> ( ( 0 < ( # ` d ) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) ) <-> ( 0 < ( # ` ( c ++ <" g "> ) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) ) ) |
| 49 |
|
fveq2 |
|- ( d = T -> ( # ` d ) = ( # ` T ) ) |
| 50 |
49
|
breq2d |
|- ( d = T -> ( 0 < ( # ` d ) <-> 0 < ( # ` T ) ) ) |
| 51 |
|
fveq2 |
|- ( d = T -> ( lastS ` d ) = ( lastS ` T ) ) |
| 52 |
51
|
oveq2d |
|- ( d = T -> ( W |`s ( lastS ` d ) ) = ( W |`s ( lastS ` T ) ) ) |
| 53 |
|
fveq1 |
|- ( d = T -> ( d ` 0 ) = ( T ` 0 ) ) |
| 54 |
53
|
oveq2d |
|- ( d = T -> ( W |`s ( d ` 0 ) ) = ( W |`s ( T ` 0 ) ) ) |
| 55 |
52 54
|
breq12d |
|- ( d = T -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) <-> ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) ) ) |
| 56 |
52 54
|
oveq12d |
|- ( d = T -> ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) ) |
| 57 |
56
|
eqeq1d |
|- ( d = T -> ( ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 58 |
57
|
rexbidv |
|- ( d = T -> ( E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) <-> E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 59 |
55 58
|
anbi12d |
|- ( d = T -> ( ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) <-> ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 60 |
50 59
|
imbi12d |
|- ( d = T -> ( ( 0 < ( # ` d ) -> ( ( W |`s ( lastS ` d ) ) /FldExt ( W |`s ( d ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` d ) ) [:] ( W |`s ( d ` 0 ) ) ) = ( 2 ^ n ) ) ) <-> ( 0 < ( # ` T ) -> ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) ) ) |
| 61 |
|
0re |
|- 0 e. RR |
| 62 |
61
|
ltnri |
|- -. 0 < 0 |
| 63 |
62
|
a1i |
|- ( ph -> -. 0 < 0 ) |
| 64 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 65 |
64
|
breq2i |
|- ( 0 < ( # ` (/) ) <-> 0 < 0 ) |
| 66 |
63 65
|
sylnibr |
|- ( ph -> -. 0 < ( # ` (/) ) ) |
| 67 |
66
|
pm2.21d |
|- ( ph -> ( 0 < ( # ` (/) ) -> ( ( W |`s ( lastS ` (/) ) ) /FldExt ( W |`s ( (/) ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` (/) ) ) [:] ( W |`s ( (/) ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 68 |
5
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> W e. Field ) |
| 69 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> g e. ( SubDRing ` W ) ) |
| 70 |
|
fldsdrgfld |
|- ( ( W e. Field /\ g e. ( SubDRing ` W ) ) -> ( W |`s g ) e. Field ) |
| 71 |
68 69 70
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( W |`s g ) e. Field ) |
| 72 |
|
fldextid |
|- ( ( W |`s g ) e. Field -> ( W |`s g ) /FldExt ( W |`s g ) ) |
| 73 |
71 72
|
syl |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( W |`s g ) /FldExt ( W |`s g ) ) |
| 74 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) -> c e. ( .< Chain ( SubDRing ` W ) ) ) |
| 75 |
74
|
chnwrd |
|- ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) -> c e. Word ( SubDRing ` W ) ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> c e. Word ( SubDRing ` W ) ) |
| 77 |
|
lswccats1 |
|- ( ( c e. Word ( SubDRing ` W ) /\ g e. ( SubDRing ` W ) ) -> ( lastS ` ( c ++ <" g "> ) ) = g ) |
| 78 |
76 69 77
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( lastS ` ( c ++ <" g "> ) ) = g ) |
| 79 |
78
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) = ( W |`s g ) ) |
| 80 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> c = (/) ) |
| 81 |
80
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( c ++ <" g "> ) = ( (/) ++ <" g "> ) ) |
| 82 |
|
s0s1 |
|- <" g "> = ( (/) ++ <" g "> ) |
| 83 |
81 82
|
eqtr4di |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( c ++ <" g "> ) = <" g "> ) |
| 84 |
83
|
fveq1d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( c ++ <" g "> ) ` 0 ) = ( <" g "> ` 0 ) ) |
| 85 |
|
s1fv |
|- ( g e. ( SubDRing ` W ) -> ( <" g "> ` 0 ) = g ) |
| 86 |
69 85
|
syl |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( <" g "> ` 0 ) = g ) |
| 87 |
84 86
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( c ++ <" g "> ) ` 0 ) = g ) |
| 88 |
87
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) = ( W |`s g ) ) |
| 89 |
73 79 88
|
3brtr4d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) |
| 90 |
|
oveq2 |
|- ( m = 0 -> ( 2 ^ m ) = ( 2 ^ 0 ) ) |
| 91 |
|
2cn |
|- 2 e. CC |
| 92 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
| 93 |
91 92
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
| 94 |
90 93
|
eqtrdi |
|- ( m = 0 -> ( 2 ^ m ) = 1 ) |
| 95 |
94
|
eqeq2d |
|- ( m = 0 -> ( ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) <-> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = 1 ) ) |
| 96 |
|
0nn0 |
|- 0 e. NN0 |
| 97 |
96
|
a1i |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> 0 e. NN0 ) |
| 98 |
79 88
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( ( W |`s g ) [:] ( W |`s g ) ) ) |
| 99 |
|
extdgid |
|- ( ( W |`s g ) e. Field -> ( ( W |`s g ) [:] ( W |`s g ) ) = 1 ) |
| 100 |
71 99
|
syl |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( W |`s g ) [:] ( W |`s g ) ) = 1 ) |
| 101 |
98 100
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = 1 ) |
| 102 |
95 97 101
|
rspcedvdw |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) |
| 103 |
89 102
|
jca |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c = (/) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) |
| 104 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( c = (/) \/ ( lastS ` c ) .< g ) ) |
| 105 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> c =/= (/) ) |
| 106 |
105
|
neneqd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> -. c = (/) ) |
| 107 |
104 106
|
orcnd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( lastS ` c ) .< g ) |
| 108 |
75
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> c e. Word ( SubDRing ` W ) ) |
| 109 |
|
lswcl |
|- ( ( c e. Word ( SubDRing ` W ) /\ c =/= (/) ) -> ( lastS ` c ) e. ( SubDRing ` W ) ) |
| 110 |
108 105 109
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( lastS ` c ) e. ( SubDRing ` W ) ) |
| 111 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> g e. ( SubDRing ` W ) ) |
| 112 |
1 2
|
breq12i |
|- ( E /FldExt F <-> ( W |`s e ) /FldExt ( W |`s f ) ) |
| 113 |
1 2
|
oveq12i |
|- ( E [:] F ) = ( ( W |`s e ) [:] ( W |`s f ) ) |
| 114 |
113
|
eqeq1i |
|- ( ( E [:] F ) = 2 <-> ( ( W |`s e ) [:] ( W |`s f ) ) = 2 ) |
| 115 |
112 114
|
anbi12i |
|- ( ( E /FldExt F /\ ( E [:] F ) = 2 ) <-> ( ( W |`s e ) /FldExt ( W |`s f ) /\ ( ( W |`s e ) [:] ( W |`s f ) ) = 2 ) ) |
| 116 |
|
oveq2 |
|- ( e = g -> ( W |`s e ) = ( W |`s g ) ) |
| 117 |
116
|
adantr |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( W |`s e ) = ( W |`s g ) ) |
| 118 |
|
oveq2 |
|- ( f = ( lastS ` c ) -> ( W |`s f ) = ( W |`s ( lastS ` c ) ) ) |
| 119 |
118
|
adantl |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( W |`s f ) = ( W |`s ( lastS ` c ) ) ) |
| 120 |
117 119
|
breq12d |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( ( W |`s e ) /FldExt ( W |`s f ) <-> ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) ) ) |
| 121 |
117 119
|
oveq12d |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( ( W |`s e ) [:] ( W |`s f ) ) = ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) ) |
| 122 |
121
|
eqeq1d |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( ( ( W |`s e ) [:] ( W |`s f ) ) = 2 <-> ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) |
| 123 |
120 122
|
anbi12d |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( ( ( W |`s e ) /FldExt ( W |`s f ) /\ ( ( W |`s e ) [:] ( W |`s f ) ) = 2 ) <-> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) ) |
| 124 |
115 123
|
bitrid |
|- ( ( e = g /\ f = ( lastS ` c ) ) -> ( ( E /FldExt F /\ ( E [:] F ) = 2 ) <-> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) ) |
| 125 |
124
|
ancoms |
|- ( ( f = ( lastS ` c ) /\ e = g ) -> ( ( E /FldExt F /\ ( E [:] F ) = 2 ) <-> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) ) |
| 126 |
125 3
|
brabga |
|- ( ( ( lastS ` c ) e. ( SubDRing ` W ) /\ g e. ( SubDRing ` W ) ) -> ( ( lastS ` c ) .< g <-> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) ) |
| 127 |
110 111 126
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( lastS ` c ) .< g <-> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) ) |
| 128 |
107 127
|
mpbid |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) ) |
| 129 |
128
|
simpld |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) ) |
| 130 |
|
hashgt0 |
|- ( ( c e. ( .< Chain ( SubDRing ` W ) ) /\ c =/= (/) ) -> 0 < ( # ` c ) ) |
| 131 |
74 130
|
sylan |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> 0 < ( # ` c ) ) |
| 132 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 133 |
131 132
|
mpd |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 134 |
133
|
simprd |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) |
| 135 |
|
oveq2 |
|- ( n = o -> ( 2 ^ n ) = ( 2 ^ o ) ) |
| 136 |
135
|
eqeq2d |
|- ( n = o -> ( ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) <-> ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) ) |
| 137 |
136
|
cbvrexvw |
|- ( E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) <-> E. o e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) |
| 138 |
134 137
|
sylib |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> E. o e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) |
| 139 |
129 138
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) ) |
| 140 |
133
|
simpld |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) ) |
| 141 |
|
fldexttr |
|- ( ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) ) -> ( W |`s g ) /FldExt ( W |`s ( c ` 0 ) ) ) |
| 142 |
139 140 141
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s g ) /FldExt ( W |`s ( c ` 0 ) ) ) |
| 143 |
108 111 77
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( lastS ` ( c ++ <" g "> ) ) = g ) |
| 144 |
143
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) = ( W |`s g ) ) |
| 145 |
144 138
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) = ( W |`s g ) ) |
| 146 |
111
|
s1cld |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> <" g "> e. Word ( SubDRing ` W ) ) |
| 147 |
131
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> 0 < ( # ` c ) ) |
| 148 |
|
ccatfv0 |
|- ( ( c e. Word ( SubDRing ` W ) /\ <" g "> e. Word ( SubDRing ` W ) /\ 0 < ( # ` c ) ) -> ( ( c ++ <" g "> ) ` 0 ) = ( c ` 0 ) ) |
| 149 |
108 146 147 148
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( c ++ <" g "> ) ` 0 ) = ( c ` 0 ) ) |
| 150 |
149
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) = ( W |`s ( c ` 0 ) ) ) |
| 151 |
150 138
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) = ( W |`s ( c ` 0 ) ) ) |
| 152 |
142 145 151
|
3brtr4d |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) |
| 153 |
|
oveq2 |
|- ( m = ( o + 1 ) -> ( 2 ^ m ) = ( 2 ^ ( o + 1 ) ) ) |
| 154 |
153
|
eqeq2d |
|- ( m = ( o + 1 ) -> ( ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) <-> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ ( o + 1 ) ) ) ) |
| 155 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> o e. NN0 ) |
| 156 |
|
1nn0 |
|- 1 e. NN0 |
| 157 |
156
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> 1 e. NN0 ) |
| 158 |
155 157
|
nn0addcld |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( o + 1 ) e. NN0 ) |
| 159 |
144 150
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( ( W |`s g ) [:] ( W |`s ( c ` 0 ) ) ) ) |
| 160 |
140
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) ) |
| 161 |
|
extdgmul |
|- ( ( ( W |`s g ) /FldExt ( W |`s ( lastS ` c ) ) /\ ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) ) -> ( ( W |`s g ) [:] ( W |`s ( c ` 0 ) ) ) = ( ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) *e ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) ) |
| 162 |
129 160 161
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s g ) [:] ( W |`s ( c ` 0 ) ) ) = ( ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) *e ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) ) |
| 163 |
91
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> 2 e. CC ) |
| 164 |
163 155
|
expcld |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( 2 ^ o ) e. CC ) |
| 165 |
163 164
|
mulcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( 2 x. ( 2 ^ o ) ) = ( ( 2 ^ o ) x. 2 ) ) |
| 166 |
128
|
simprd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) = 2 ) |
| 167 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) |
| 168 |
166 167
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) *e ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) = ( 2 *e ( 2 ^ o ) ) ) |
| 169 |
|
2re |
|- 2 e. RR |
| 170 |
169
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> 2 e. RR ) |
| 171 |
170 155
|
reexpcld |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( 2 ^ o ) e. RR ) |
| 172 |
|
rexmul |
|- ( ( 2 e. RR /\ ( 2 ^ o ) e. RR ) -> ( 2 *e ( 2 ^ o ) ) = ( 2 x. ( 2 ^ o ) ) ) |
| 173 |
170 171 172
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( 2 *e ( 2 ^ o ) ) = ( 2 x. ( 2 ^ o ) ) ) |
| 174 |
168 173
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) *e ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) = ( 2 x. ( 2 ^ o ) ) ) |
| 175 |
163 155
|
expp1d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( 2 ^ ( o + 1 ) ) = ( ( 2 ^ o ) x. 2 ) ) |
| 176 |
165 174 175
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( ( W |`s g ) [:] ( W |`s ( lastS ` c ) ) ) *e ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) ) = ( 2 ^ ( o + 1 ) ) ) |
| 177 |
159 162 176
|
3eqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ ( o + 1 ) ) ) |
| 178 |
154 158 177
|
rspcedvdw |
|- ( ( ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) /\ o e. NN0 ) /\ ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ o ) ) -> E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) |
| 179 |
178 138
|
r19.29a |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) |
| 180 |
152 179
|
jca |
|- ( ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) /\ c =/= (/) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) |
| 181 |
103 180
|
pm2.61dane |
|- ( ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) /\ 0 < ( # ` ( c ++ <" g "> ) ) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) |
| 182 |
181
|
ex |
|- ( ( ( ( ( ph /\ c e. ( .< Chain ( SubDRing ` W ) ) ) /\ g e. ( SubDRing ` W ) ) /\ ( c = (/) \/ ( lastS ` c ) .< g ) ) /\ ( 0 < ( # ` c ) -> ( ( W |`s ( lastS ` c ) ) /FldExt ( W |`s ( c ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` c ) ) [:] ( W |`s ( c ` 0 ) ) ) = ( 2 ^ n ) ) ) ) -> ( 0 < ( # ` ( c ++ <" g "> ) ) -> ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) /FldExt ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) /\ E. m e. NN0 ( ( W |`s ( lastS ` ( c ++ <" g "> ) ) ) [:] ( W |`s ( ( c ++ <" g "> ) ` 0 ) ) ) = ( 2 ^ m ) ) ) ) |
| 183 |
20 32 48 60 4 67 182
|
chnind |
|- ( ph -> ( 0 < ( # ` T ) -> ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) ) |
| 184 |
8 183
|
mpd |
|- ( ph -> ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) ) |
| 185 |
7 6
|
breq12d |
|- ( ph -> ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) <-> L /FldExt Q ) ) |
| 186 |
7 6
|
oveq12d |
|- ( ph -> ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( L [:] Q ) ) |
| 187 |
186
|
eqeq1d |
|- ( ph -> ( ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) <-> ( L [:] Q ) = ( 2 ^ n ) ) ) |
| 188 |
187
|
rexbidv |
|- ( ph -> ( E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) <-> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) ) |
| 189 |
185 188
|
anbi12d |
|- ( ph -> ( ( ( W |`s ( lastS ` T ) ) /FldExt ( W |`s ( T ` 0 ) ) /\ E. n e. NN0 ( ( W |`s ( lastS ` T ) ) [:] ( W |`s ( T ` 0 ) ) ) = ( 2 ^ n ) ) <-> ( L /FldExt Q /\ E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) ) ) |
| 190 |
184 189
|
mpbid |
|- ( ph -> ( L /FldExt Q /\ E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) ) |