| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextsdrg.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 2 |
|
fldextsdrg.2 |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐹 ) |
| 3 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 6 |
1
|
fldextsubrg |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐵 ∈ ( SubRing ‘ 𝐸 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝐸 ) ) |
| 8 |
|
fldextress |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) ) |
| 10 |
1
|
oveq2i |
⊢ ( 𝐸 ↾s 𝐵 ) = ( 𝐸 ↾s ( Base ‘ 𝐹 ) ) |
| 11 |
9 10
|
eqtr4di |
⊢ ( 𝜑 → 𝐹 = ( 𝐸 ↾s 𝐵 ) ) |
| 12 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 14 |
11 13
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐵 ) ∈ Field ) |
| 15 |
14
|
flddrngd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐵 ) ∈ DivRing ) |
| 16 |
|
issdrg |
⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐵 ) ∈ DivRing ) ) |
| 17 |
5 7 15 16
|
syl3anbrc |
⊢ ( 𝜑 → 𝐵 ∈ ( SubDRing ‘ 𝐸 ) ) |