Metamath Proof Explorer


Theorem fldextsdrg

Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses fldextsdrg.1 𝐵 = ( Base ‘ 𝐹 )
fldextsdrg.2 ( 𝜑𝐸 /FldExt 𝐹 )
Assertion fldextsdrg ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 fldextsdrg.1 𝐵 = ( Base ‘ 𝐹 )
2 fldextsdrg.2 ( 𝜑𝐸 /FldExt 𝐹 )
3 fldextfld1 ( 𝐸 /FldExt 𝐹𝐸 ∈ Field )
4 2 3 syl ( 𝜑𝐸 ∈ Field )
5 4 flddrngd ( 𝜑𝐸 ∈ DivRing )
6 1 fldextsubrg ( 𝐸 /FldExt 𝐹𝐵 ∈ ( SubRing ‘ 𝐸 ) )
7 2 6 syl ( 𝜑𝐵 ∈ ( SubRing ‘ 𝐸 ) )
8 fldextress ( 𝐸 /FldExt 𝐹𝐹 = ( 𝐸s ( Base ‘ 𝐹 ) ) )
9 2 8 syl ( 𝜑𝐹 = ( 𝐸s ( Base ‘ 𝐹 ) ) )
10 1 oveq2i ( 𝐸s 𝐵 ) = ( 𝐸s ( Base ‘ 𝐹 ) )
11 9 10 eqtr4di ( 𝜑𝐹 = ( 𝐸s 𝐵 ) )
12 fldextfld2 ( 𝐸 /FldExt 𝐹𝐹 ∈ Field )
13 2 12 syl ( 𝜑𝐹 ∈ Field )
14 11 13 eqeltrrd ( 𝜑 → ( 𝐸s 𝐵 ) ∈ Field )
15 14 flddrngd ( 𝜑 → ( 𝐸s 𝐵 ) ∈ DivRing )
16 issdrg ( 𝐵 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐵 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐵 ) ∈ DivRing ) )
17 5 7 15 16 syl3anbrc ( 𝜑𝐵 ∈ ( SubDRing ‘ 𝐸 ) )