| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrext2chn.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
constrext2chn.l |
|- L = ( CCfld |`s S ) |
| 3 |
|
constrext2chn.s |
|- S = ( CCfld fldGen ( QQ u. { A } ) ) |
| 4 |
|
constrext2chn.a |
|- ( ph -> A e. Constr ) |
| 5 |
|
constrcbvlem |
|- rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 6 |
|
eqid |
|- ( CCfld |`s e ) = ( CCfld |`s e ) |
| 7 |
|
eqid |
|- ( CCfld |`s f ) = ( CCfld |`s f ) |
| 8 |
|
oveq2 |
|- ( h = e -> ( CCfld |`s h ) = ( CCfld |`s e ) ) |
| 9 |
8
|
adantl |
|- ( ( g = f /\ h = e ) -> ( CCfld |`s h ) = ( CCfld |`s e ) ) |
| 10 |
|
oveq2 |
|- ( g = f -> ( CCfld |`s g ) = ( CCfld |`s f ) ) |
| 11 |
10
|
adantr |
|- ( ( g = f /\ h = e ) -> ( CCfld |`s g ) = ( CCfld |`s f ) ) |
| 12 |
9 11
|
breq12d |
|- ( ( g = f /\ h = e ) -> ( ( CCfld |`s h ) /FldExt ( CCfld |`s g ) <-> ( CCfld |`s e ) /FldExt ( CCfld |`s f ) ) ) |
| 13 |
9 11
|
oveq12d |
|- ( ( g = f /\ h = e ) -> ( ( CCfld |`s h ) [:] ( CCfld |`s g ) ) = ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( ( g = f /\ h = e ) -> ( ( ( CCfld |`s h ) [:] ( CCfld |`s g ) ) = 2 <-> ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) = 2 ) ) |
| 15 |
12 14
|
anbi12d |
|- ( ( g = f /\ h = e ) -> ( ( ( CCfld |`s h ) /FldExt ( CCfld |`s g ) /\ ( ( CCfld |`s h ) [:] ( CCfld |`s g ) ) = 2 ) <-> ( ( CCfld |`s e ) /FldExt ( CCfld |`s f ) /\ ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) = 2 ) ) ) |
| 16 |
15
|
cbvopabv |
|- { <. g , h >. | ( ( CCfld |`s h ) /FldExt ( CCfld |`s g ) /\ ( ( CCfld |`s h ) [:] ( CCfld |`s g ) ) = 2 ) } = { <. f , e >. | ( ( CCfld |`s e ) /FldExt ( CCfld |`s f ) /\ ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) = 2 ) } |
| 17 |
|
peano1 |
|- (/) e. _om |
| 18 |
17
|
a1i |
|- ( ph -> (/) e. _om ) |
| 19 |
3
|
oveq2i |
|- ( CCfld |`s S ) = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) |
| 20 |
2 19
|
eqtri |
|- L = ( CCfld |`s ( CCfld fldGen ( QQ u. { A } ) ) ) |
| 21 |
5 6 7 16 18 1 20 4
|
constrext2chnlem |
|- ( ph -> E. n e. NN0 ( L [:] Q ) = ( 2 ^ n ) ) |