| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrextdg2.1 |
|- E = ( CCfld |`s e ) |
| 3 |
|
constrextdg2.2 |
|- F = ( CCfld |`s f ) |
| 4 |
|
constrextdg2.l |
|- .< = { <. f , e >. | ( E /FldExt F /\ ( E [:] F ) = 2 ) } |
| 5 |
|
constrextdg2.n |
|- ( ph -> N e. _om ) |
| 6 |
|
constrextdg2lem.1 |
|- ( ph -> R e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 7 |
|
constrextdg2lem.2 |
|- ( ph -> ( R ` 0 ) = QQ ) |
| 8 |
|
constrextdg2lem.3 |
|- ( ph -> ( C ` N ) C_ ( lastS ` R ) ) |
| 9 |
|
uneq2 |
|- ( i = (/) -> ( ( C ` N ) u. i ) = ( ( C ` N ) u. (/) ) ) |
| 10 |
9
|
sseq1d |
|- ( i = (/) -> ( ( ( C ` N ) u. i ) C_ ( lastS ` v ) <-> ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) ) ) |
| 11 |
10
|
anbi2d |
|- ( i = (/) -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) ) ) ) |
| 12 |
11
|
rexbidv |
|- ( i = (/) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) ) ) ) |
| 13 |
|
uneq2 |
|- ( i = g -> ( ( C ` N ) u. i ) = ( ( C ` N ) u. g ) ) |
| 14 |
13
|
sseq1d |
|- ( i = g -> ( ( ( C ` N ) u. i ) C_ ( lastS ` v ) <-> ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) ) |
| 15 |
14
|
anbi2d |
|- ( i = g -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) ) ) |
| 16 |
15
|
rexbidv |
|- ( i = g -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) ) ) |
| 17 |
|
fveq1 |
|- ( v = u -> ( v ` 0 ) = ( u ` 0 ) ) |
| 18 |
17
|
eqeq1d |
|- ( v = u -> ( ( v ` 0 ) = QQ <-> ( u ` 0 ) = QQ ) ) |
| 19 |
|
fveq2 |
|- ( v = u -> ( lastS ` v ) = ( lastS ` u ) ) |
| 20 |
19
|
sseq2d |
|- ( v = u -> ( ( ( C ` N ) u. i ) C_ ( lastS ` v ) <-> ( ( C ` N ) u. i ) C_ ( lastS ` u ) ) ) |
| 21 |
18 20
|
anbi12d |
|- ( v = u -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` u ) ) ) ) |
| 22 |
21
|
cbvrexvw |
|- ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` u ) ) ) |
| 23 |
|
uneq2 |
|- ( i = ( g u. { y } ) -> ( ( C ` N ) u. i ) = ( ( C ` N ) u. ( g u. { y } ) ) ) |
| 24 |
23
|
sseq1d |
|- ( i = ( g u. { y } ) -> ( ( ( C ` N ) u. i ) C_ ( lastS ` u ) <-> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) |
| 25 |
24
|
anbi2d |
|- ( i = ( g u. { y } ) -> ( ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` u ) ) <-> ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) ) |
| 26 |
25
|
rexbidv |
|- ( i = ( g u. { y } ) -> ( E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` u ) ) <-> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) ) |
| 27 |
22 26
|
bitrid |
|- ( i = ( g u. { y } ) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) ) |
| 28 |
|
uneq2 |
|- ( i = ( C ` suc N ) -> ( ( C ` N ) u. i ) = ( ( C ` N ) u. ( C ` suc N ) ) ) |
| 29 |
28
|
sseq1d |
|- ( i = ( C ` suc N ) -> ( ( ( C ` N ) u. i ) C_ ( lastS ` v ) <-> ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) ) |
| 30 |
29
|
anbi2d |
|- ( i = ( C ` suc N ) -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) ) ) |
| 31 |
30
|
rexbidv |
|- ( i = ( C ` suc N ) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. i ) C_ ( lastS ` v ) ) <-> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) ) ) |
| 32 |
|
fveq1 |
|- ( v = R -> ( v ` 0 ) = ( R ` 0 ) ) |
| 33 |
32
|
eqeq1d |
|- ( v = R -> ( ( v ` 0 ) = QQ <-> ( R ` 0 ) = QQ ) ) |
| 34 |
|
fveq2 |
|- ( v = R -> ( lastS ` v ) = ( lastS ` R ) ) |
| 35 |
34
|
sseq2d |
|- ( v = R -> ( ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) <-> ( ( C ` N ) u. (/) ) C_ ( lastS ` R ) ) ) |
| 36 |
33 35
|
anbi12d |
|- ( v = R -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) ) <-> ( ( R ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` R ) ) ) ) |
| 37 |
|
un0 |
|- ( ( C ` N ) u. (/) ) = ( C ` N ) |
| 38 |
37 8
|
eqsstrid |
|- ( ph -> ( ( C ` N ) u. (/) ) C_ ( lastS ` R ) ) |
| 39 |
7 38
|
jca |
|- ( ph -> ( ( R ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` R ) ) ) |
| 40 |
36 6 39
|
rspcedvdw |
|- ( ph -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. (/) ) C_ ( lastS ` v ) ) ) |
| 41 |
|
fveq1 |
|- ( u = v -> ( u ` 0 ) = ( v ` 0 ) ) |
| 42 |
41
|
eqeq1d |
|- ( u = v -> ( ( u ` 0 ) = QQ <-> ( v ` 0 ) = QQ ) ) |
| 43 |
|
fveq2 |
|- ( u = v -> ( lastS ` u ) = ( lastS ` v ) ) |
| 44 |
43
|
sseq2d |
|- ( u = v -> ( ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) <-> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` v ) ) ) |
| 45 |
42 44
|
anbi12d |
|- ( u = v -> ( ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) <-> ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` v ) ) ) ) |
| 46 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> v e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> v e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 48 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( v ` 0 ) = QQ ) |
| 49 |
|
simpr |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) |
| 50 |
49
|
unssad |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> ( C ` N ) C_ ( lastS ` v ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( C ` N ) C_ ( lastS ` v ) ) |
| 52 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) |
| 53 |
52
|
unssbd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> g C_ ( lastS ` v ) ) |
| 54 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> y e. ( lastS ` v ) ) |
| 55 |
54
|
snssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> { y } C_ ( lastS ` v ) ) |
| 56 |
53 55
|
unssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( g u. { y } ) C_ ( lastS ` v ) ) |
| 57 |
51 56
|
unssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` v ) ) |
| 58 |
48 57
|
jca |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` v ) ) ) |
| 59 |
45 47 58
|
rspcedvdw |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( lastS ` v ) ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) |
| 60 |
|
fveq1 |
|- ( u = ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) -> ( u ` 0 ) = ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) ) |
| 61 |
60
|
eqeq1d |
|- ( u = ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) -> ( ( u ` 0 ) = QQ <-> ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = QQ ) ) |
| 62 |
|
fveq2 |
|- ( u = ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) -> ( lastS ` u ) = ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) ) |
| 63 |
62
|
sseq2d |
|- ( u = ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) -> ( ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) <-> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) ) ) |
| 64 |
61 63
|
anbi12d |
|- ( u = ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) -> ( ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) <-> ( ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) ) ) ) |
| 65 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 66 |
|
cndrng |
|- CCfld e. DivRing |
| 67 |
66
|
a1i |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> CCfld e. DivRing ) |
| 68 |
46
|
chnwrd |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> v e. Word ( SubDRing ` CCfld ) ) |
| 69 |
|
simpr |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> v = (/) ) |
| 70 |
69
|
fveq2d |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> ( lastS ` v ) = ( lastS ` (/) ) ) |
| 71 |
|
lsw0g |
|- ( lastS ` (/) ) = (/) |
| 72 |
70 71
|
eqtrdi |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> ( lastS ` v ) = (/) ) |
| 73 |
|
simplr |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) |
| 74 |
|
ssun1 |
|- ( C ` N ) C_ ( ( C ` N ) u. g ) |
| 75 |
|
nnon |
|- ( N e. _om -> N e. On ) |
| 76 |
5 75
|
syl |
|- ( ph -> N e. On ) |
| 77 |
1 76
|
constr01 |
|- ( ph -> { 0 , 1 } C_ ( C ` N ) ) |
| 78 |
|
c0ex |
|- 0 e. _V |
| 79 |
78
|
prnz |
|- { 0 , 1 } =/= (/) |
| 80 |
|
ssn0 |
|- ( ( { 0 , 1 } C_ ( C ` N ) /\ { 0 , 1 } =/= (/) ) -> ( C ` N ) =/= (/) ) |
| 81 |
77 79 80
|
sylancl |
|- ( ph -> ( C ` N ) =/= (/) ) |
| 82 |
|
ssn0 |
|- ( ( ( C ` N ) C_ ( ( C ` N ) u. g ) /\ ( C ` N ) =/= (/) ) -> ( ( C ` N ) u. g ) =/= (/) ) |
| 83 |
74 81 82
|
sylancr |
|- ( ph -> ( ( C ` N ) u. g ) =/= (/) ) |
| 84 |
83
|
ad2antrr |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> ( ( C ` N ) u. g ) =/= (/) ) |
| 85 |
|
ssn0 |
|- ( ( ( ( C ` N ) u. g ) C_ ( lastS ` v ) /\ ( ( C ` N ) u. g ) =/= (/) ) -> ( lastS ` v ) =/= (/) ) |
| 86 |
73 84 85
|
syl2anc |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> ( lastS ` v ) =/= (/) ) |
| 87 |
86
|
neneqd |
|- ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ v = (/) ) -> -. ( lastS ` v ) = (/) ) |
| 88 |
72 87
|
pm2.65da |
|- ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> -. v = (/) ) |
| 89 |
88
|
neqned |
|- ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> v =/= (/) ) |
| 90 |
89
|
ad4antr |
|- ( ( ( ( ( ( ph /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ g C_ ( C ` suc N ) ) -> v =/= (/) ) |
| 91 |
90
|
an62ds |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> v =/= (/) ) |
| 92 |
|
lswcl |
|- ( ( v e. Word ( SubDRing ` CCfld ) /\ v =/= (/) ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 93 |
68 91 92
|
syl2anc |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 94 |
93
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( lastS ` v ) e. ( SubDRing ` CCfld ) ) |
| 95 |
65
|
sdrgss |
|- ( ( lastS ` v ) e. ( SubDRing ` CCfld ) -> ( lastS ` v ) C_ CC ) |
| 96 |
94 95
|
syl |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( lastS ` v ) C_ CC ) |
| 97 |
|
onsuc |
|- ( N e. On -> suc N e. On ) |
| 98 |
76 97
|
syl |
|- ( ph -> suc N e. On ) |
| 99 |
1 98
|
constrsscn |
|- ( ph -> ( C ` suc N ) C_ CC ) |
| 100 |
99
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( C ` suc N ) C_ CC ) |
| 101 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> y e. ( ( C ` suc N ) \ g ) ) |
| 102 |
101
|
eldifad |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> y e. ( C ` suc N ) ) |
| 103 |
102
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> y e. ( C ` suc N ) ) |
| 104 |
100 103
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> y e. CC ) |
| 105 |
104
|
snssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> { y } C_ CC ) |
| 106 |
96 105
|
unssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( lastS ` v ) u. { y } ) C_ CC ) |
| 107 |
65 67 106
|
fldgensdrg |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) e. ( SubDRing ` CCfld ) ) |
| 108 |
46
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> v e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 109 |
94
|
elexd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( lastS ` v ) e. _V ) |
| 110 |
107
|
elexd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) e. _V ) |
| 111 |
|
eqid |
|- ( CCfld |`s ( lastS ` v ) ) = ( CCfld |`s ( lastS ` v ) ) |
| 112 |
|
eqid |
|- ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) = ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 113 |
|
cnfldfld |
|- CCfld e. Field |
| 114 |
113
|
a1i |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> CCfld e. Field ) |
| 115 |
65 111 112 114 94 105
|
fldgenfldext |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) ) |
| 116 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) |
| 117 |
2 3
|
breq12i |
|- ( E /FldExt F <-> ( CCfld |`s e ) /FldExt ( CCfld |`s f ) ) |
| 118 |
|
oveq2 |
|- ( e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) -> ( CCfld |`s e ) = ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) ) |
| 119 |
118
|
adantl |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( CCfld |`s e ) = ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) ) |
| 120 |
|
oveq2 |
|- ( f = ( lastS ` v ) -> ( CCfld |`s f ) = ( CCfld |`s ( lastS ` v ) ) ) |
| 121 |
120
|
adantr |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( CCfld |`s f ) = ( CCfld |`s ( lastS ` v ) ) ) |
| 122 |
119 121
|
breq12d |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( ( CCfld |`s e ) /FldExt ( CCfld |`s f ) <-> ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) ) ) |
| 123 |
117 122
|
bitrid |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( E /FldExt F <-> ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) ) ) |
| 124 |
2 3
|
oveq12i |
|- ( E [:] F ) = ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) |
| 125 |
119 121
|
oveq12d |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( ( CCfld |`s e ) [:] ( CCfld |`s f ) ) = ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) ) |
| 126 |
124 125
|
eqtrid |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( E [:] F ) = ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) ) |
| 127 |
126
|
eqeq1d |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( ( E [:] F ) = 2 <-> ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) ) |
| 128 |
123 127
|
anbi12d |
|- ( ( f = ( lastS ` v ) /\ e = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) -> ( ( E /FldExt F /\ ( E [:] F ) = 2 ) <-> ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) ) ) |
| 129 |
128 4
|
brabga |
|- ( ( ( lastS ` v ) e. _V /\ ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) e. _V ) -> ( ( lastS ` v ) .< ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) <-> ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) ) ) |
| 130 |
129
|
biimpar |
|- ( ( ( ( lastS ` v ) e. _V /\ ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) e. _V ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) /FldExt ( CCfld |`s ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) ) -> ( lastS ` v ) .< ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 131 |
109 110 115 116 130
|
syl22anc |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( lastS ` v ) .< ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 132 |
131
|
olcd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( v = (/) \/ ( lastS ` v ) .< ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) ) |
| 133 |
107 108 132
|
chnccats1 |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) e. ( .< Chain ( SubDRing ` CCfld ) ) ) |
| 134 |
68
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> v e. Word ( SubDRing ` CCfld ) ) |
| 135 |
107
|
s1cld |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> e. Word ( SubDRing ` CCfld ) ) |
| 136 |
|
hashgt0 |
|- ( ( v e. ( .< Chain ( SubDRing ` CCfld ) ) /\ v =/= (/) ) -> 0 < ( # ` v ) ) |
| 137 |
46 91 136
|
syl2anc |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> 0 < ( # ` v ) ) |
| 138 |
137
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> 0 < ( # ` v ) ) |
| 139 |
|
ccatfv0 |
|- ( ( v e. Word ( SubDRing ` CCfld ) /\ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> e. Word ( SubDRing ` CCfld ) /\ 0 < ( # ` v ) ) -> ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = ( v ` 0 ) ) |
| 140 |
134 135 138 139
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = ( v ` 0 ) ) |
| 141 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( v ` 0 ) = QQ ) |
| 142 |
140 141
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = QQ ) |
| 143 |
50
|
adantr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( C ` N ) C_ ( lastS ` v ) ) |
| 144 |
|
ssun3 |
|- ( ( C ` N ) C_ ( lastS ` v ) -> ( C ` N ) C_ ( ( lastS ` v ) u. { y } ) ) |
| 145 |
143 144
|
syl |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( C ` N ) C_ ( ( lastS ` v ) u. { y } ) ) |
| 146 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) |
| 147 |
146
|
unssbd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> g C_ ( lastS ` v ) ) |
| 148 |
|
ssun3 |
|- ( g C_ ( lastS ` v ) -> g C_ ( ( lastS ` v ) u. { y } ) ) |
| 149 |
147 148
|
syl |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> g C_ ( ( lastS ` v ) u. { y } ) ) |
| 150 |
|
ssun2 |
|- { y } C_ ( ( lastS ` v ) u. { y } ) |
| 151 |
150
|
a1i |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> { y } C_ ( ( lastS ` v ) u. { y } ) ) |
| 152 |
149 151
|
unssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( g u. { y } ) C_ ( ( lastS ` v ) u. { y } ) ) |
| 153 |
145 152
|
unssd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( ( lastS ` v ) u. { y } ) ) |
| 154 |
65 67 106
|
fldgenssid |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( lastS ` v ) u. { y } ) C_ ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 155 |
153 154
|
sstrd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 156 |
|
lswccats1 |
|- ( ( v e. Word ( SubDRing ` CCfld ) /\ ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) e. ( SubDRing ` CCfld ) ) -> ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 157 |
134 107 156
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) = ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) |
| 158 |
155 157
|
sseqtrrd |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) ) |
| 159 |
142 158
|
jca |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> ( ( ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` ( v ++ <" ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) "> ) ) ) ) |
| 160 |
64 133 159
|
rspcedvdw |
|- ( ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) /\ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) |
| 161 |
76
|
ad5antr |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> N e. On ) |
| 162 |
1 111 112 93 161 50 102
|
constrelextdg2 |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> ( y e. ( lastS ` v ) \/ ( ( CCfld |`s ( CCfld fldGen ( ( lastS ` v ) u. { y } ) ) ) [:] ( CCfld |`s ( lastS ` v ) ) ) = 2 ) ) |
| 163 |
59 160 162
|
mpjaodan |
|- ( ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( v ` 0 ) = QQ ) /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) |
| 164 |
163
|
anasss |
|- ( ( ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) |
| 165 |
164
|
rexlimdva2 |
|- ( ( ( ph /\ g C_ ( C ` suc N ) ) /\ y e. ( ( C ` suc N ) \ g ) ) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) ) |
| 166 |
165
|
anasss |
|- ( ( ph /\ ( g C_ ( C ` suc N ) /\ y e. ( ( C ` suc N ) \ g ) ) ) -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. g ) C_ ( lastS ` v ) ) -> E. u e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( u ` 0 ) = QQ /\ ( ( C ` N ) u. ( g u. { y } ) ) C_ ( lastS ` u ) ) ) ) |
| 167 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
| 168 |
5 167
|
syl |
|- ( ph -> suc N e. _om ) |
| 169 |
1 168
|
constrfin |
|- ( ph -> ( C ` suc N ) e. Fin ) |
| 170 |
12 16 27 31 40 166 169
|
findcard2d |
|- ( ph -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) ) |
| 171 |
|
simpr |
|- ( ( ( ph /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) -> ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) |
| 172 |
171
|
unssbd |
|- ( ( ( ph /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) -> ( C ` suc N ) C_ ( lastS ` v ) ) |
| 173 |
172
|
ex |
|- ( ( ph /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) -> ( ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) -> ( C ` suc N ) C_ ( lastS ` v ) ) ) |
| 174 |
173
|
anim2d |
|- ( ( ph /\ v e. ( .< Chain ( SubDRing ` CCfld ) ) ) -> ( ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) -> ( ( v ` 0 ) = QQ /\ ( C ` suc N ) C_ ( lastS ` v ) ) ) ) |
| 175 |
174
|
reximdva |
|- ( ph -> ( E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( ( C ` N ) u. ( C ` suc N ) ) C_ ( lastS ` v ) ) -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc N ) C_ ( lastS ` v ) ) ) ) |
| 176 |
170 175
|
mpd |
|- ( ph -> E. v e. ( .< Chain ( SubDRing ` CCfld ) ) ( ( v ` 0 ) = QQ /\ ( C ` suc N ) C_ ( lastS ` v ) ) ) |