| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnccats1.1 |
|- ( ph -> X e. A ) |
| 2 |
|
chnccats1.2 |
|- ( ph -> T e. ( .< Chain A ) ) |
| 3 |
|
chnccats1.3 |
|- ( ph -> ( T = (/) \/ ( lastS ` T ) .< X ) ) |
| 4 |
2
|
chnwrd |
|- ( ph -> T e. Word A ) |
| 5 |
1
|
s1cld |
|- ( ph -> <" X "> e. Word A ) |
| 6 |
|
ccatcl |
|- ( ( T e. Word A /\ <" X "> e. Word A ) -> ( T ++ <" X "> ) e. Word A ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ph -> ( T ++ <" X "> ) e. Word A ) |
| 8 |
|
eqidd |
|- ( ph -> ( # ` T ) = ( # ` T ) ) |
| 9 |
8 4
|
wrdfd |
|- ( ph -> T : ( 0 ..^ ( # ` T ) ) --> A ) |
| 10 |
9
|
fdmd |
|- ( ph -> dom T = ( 0 ..^ ( # ` T ) ) ) |
| 11 |
10
|
difeq1d |
|- ( ph -> ( dom T \ { 0 } ) = ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) |
| 12 |
11
|
eleq2d |
|- ( ph -> ( n e. ( dom T \ { 0 } ) <-> n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) ) |
| 13 |
12
|
biimpar |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> n e. ( dom T \ { 0 } ) ) |
| 14 |
|
ischn |
|- ( T e. ( .< Chain A ) <-> ( T e. Word A /\ A. n e. ( dom T \ { 0 } ) ( T ` ( n - 1 ) ) .< ( T ` n ) ) ) |
| 15 |
2 14
|
sylib |
|- ( ph -> ( T e. Word A /\ A. n e. ( dom T \ { 0 } ) ( T ` ( n - 1 ) ) .< ( T ` n ) ) ) |
| 16 |
15
|
simprd |
|- ( ph -> A. n e. ( dom T \ { 0 } ) ( T ` ( n - 1 ) ) .< ( T ` n ) ) |
| 17 |
16
|
r19.21bi |
|- ( ( ph /\ n e. ( dom T \ { 0 } ) ) -> ( T ` ( n - 1 ) ) .< ( T ` n ) ) |
| 18 |
13 17
|
syldan |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( T ` ( n - 1 ) ) .< ( T ` n ) ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> T e. Word A ) |
| 20 |
|
simpr |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) |
| 21 |
|
lencl |
|- ( T e. Word A -> ( # ` T ) e. NN0 ) |
| 22 |
19 21
|
syl |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( # ` T ) e. NN0 ) |
| 23 |
20 22
|
elfzodif0 |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( n - 1 ) e. ( 0 ..^ ( # ` T ) ) ) |
| 24 |
|
ccats1val1 |
|- ( ( T e. Word A /\ ( n - 1 ) e. ( 0 ..^ ( # ` T ) ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) = ( T ` ( n - 1 ) ) ) |
| 25 |
19 23 24
|
syl2anc |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) = ( T ` ( n - 1 ) ) ) |
| 26 |
20
|
eldifad |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> n e. ( 0 ..^ ( # ` T ) ) ) |
| 27 |
|
ccats1val1 |
|- ( ( T e. Word A /\ n e. ( 0 ..^ ( # ` T ) ) ) -> ( ( T ++ <" X "> ) ` n ) = ( T ` n ) ) |
| 28 |
19 26 27
|
syl2anc |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` n ) = ( T ` n ) ) |
| 29 |
18 25 28
|
3brtr4d |
|- ( ( ph /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 30 |
29
|
adantlr |
|- ( ( ( ph /\ n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ) /\ n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> n e. ( { ( # ` T ) } \ { 0 } ) ) |
| 32 |
31
|
adantr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> n e. ( { ( # ` T ) } \ { 0 } ) ) |
| 33 |
|
noel |
|- -. n e. (/) |
| 34 |
|
fveq2 |
|- ( T = (/) -> ( # ` T ) = ( # ` (/) ) ) |
| 35 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 36 |
34 35
|
eqtrdi |
|- ( T = (/) -> ( # ` T ) = 0 ) |
| 37 |
36
|
adantl |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> ( # ` T ) = 0 ) |
| 38 |
37
|
sneqd |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> { ( # ` T ) } = { 0 } ) |
| 39 |
38
|
difeq1d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> ( { ( # ` T ) } \ { 0 } ) = ( { 0 } \ { 0 } ) ) |
| 40 |
|
difid |
|- ( { 0 } \ { 0 } ) = (/) |
| 41 |
39 40
|
eqtrdi |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> ( { ( # ` T ) } \ { 0 } ) = (/) ) |
| 42 |
41
|
eleq2d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> ( n e. ( { ( # ` T ) } \ { 0 } ) <-> n e. (/) ) ) |
| 43 |
33 42
|
mtbiri |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> -. n e. ( { ( # ` T ) } \ { 0 } ) ) |
| 44 |
32 43
|
pm2.21dd |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ T = (/) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 45 |
|
simpr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( lastS ` T ) .< X ) |
| 46 |
31
|
eldifad |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> n e. { ( # ` T ) } ) |
| 47 |
46
|
elsnd |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> n = ( # ` T ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( n - 1 ) = ( ( # ` T ) - 1 ) ) |
| 49 |
48
|
adantr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( n - 1 ) = ( ( # ` T ) - 1 ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( T ` ( n - 1 ) ) = ( T ` ( ( # ` T ) - 1 ) ) ) |
| 51 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> T e. Word A ) |
| 52 |
4
|
adantr |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> T e. Word A ) |
| 53 |
52 21
|
syl |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( # ` T ) e. NN0 ) |
| 54 |
47 31
|
eqeltrrd |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( # ` T ) e. ( { ( # ` T ) } \ { 0 } ) ) |
| 55 |
54
|
eldifbd |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> -. ( # ` T ) e. { 0 } ) |
| 56 |
53 55
|
eldifd |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( # ` T ) e. ( NN0 \ { 0 } ) ) |
| 57 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
| 58 |
56 57
|
eleqtrrdi |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( # ` T ) e. NN ) |
| 59 |
|
fzo0end |
|- ( ( # ` T ) e. NN -> ( ( # ` T ) - 1 ) e. ( 0 ..^ ( # ` T ) ) ) |
| 60 |
58 59
|
syl |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( ( # ` T ) - 1 ) e. ( 0 ..^ ( # ` T ) ) ) |
| 61 |
48 60
|
eqeltrd |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( n - 1 ) e. ( 0 ..^ ( # ` T ) ) ) |
| 62 |
61
|
adantr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( n - 1 ) e. ( 0 ..^ ( # ` T ) ) ) |
| 63 |
51 62 24
|
syl2anc |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) = ( T ` ( n - 1 ) ) ) |
| 64 |
|
lsw |
|- ( T e. Word A -> ( lastS ` T ) = ( T ` ( ( # ` T ) - 1 ) ) ) |
| 65 |
51 64
|
syl |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( lastS ` T ) = ( T ` ( ( # ` T ) - 1 ) ) ) |
| 66 |
50 63 65
|
3eqtr4d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) = ( lastS ` T ) ) |
| 67 |
47
|
adantr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> n = ( # ` T ) ) |
| 68 |
67
|
fveq2d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` n ) = ( ( T ++ <" X "> ) ` ( # ` T ) ) ) |
| 69 |
1
|
ad2antrr |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> X e. A ) |
| 70 |
|
eqidd |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( # ` T ) = ( # ` T ) ) |
| 71 |
|
ccats1val2 |
|- ( ( T e. Word A /\ X e. A /\ ( # ` T ) = ( # ` T ) ) -> ( ( T ++ <" X "> ) ` ( # ` T ) ) = X ) |
| 72 |
51 69 70 71
|
syl3anc |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` ( # ` T ) ) = X ) |
| 73 |
68 72
|
eqtrd |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` n ) = X ) |
| 74 |
45 66 73
|
3brtr4d |
|- ( ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) /\ ( lastS ` T ) .< X ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 75 |
3
|
adantr |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( T = (/) \/ ( lastS ` T ) .< X ) ) |
| 76 |
44 74 75
|
mpjaodan |
|- ( ( ph /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 77 |
76
|
adantlr |
|- ( ( ( ph /\ n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ) /\ n e. ( { ( # ` T ) } \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 78 |
|
ccatws1len |
|- ( T e. Word A -> ( # ` ( T ++ <" X "> ) ) = ( ( # ` T ) + 1 ) ) |
| 79 |
4 78
|
syl |
|- ( ph -> ( # ` ( T ++ <" X "> ) ) = ( ( # ` T ) + 1 ) ) |
| 80 |
79
|
eqcomd |
|- ( ph -> ( ( # ` T ) + 1 ) = ( # ` ( T ++ <" X "> ) ) ) |
| 81 |
80 7
|
wrdfd |
|- ( ph -> ( T ++ <" X "> ) : ( 0 ..^ ( ( # ` T ) + 1 ) ) --> A ) |
| 82 |
81
|
fdmd |
|- ( ph -> dom ( T ++ <" X "> ) = ( 0 ..^ ( ( # ` T ) + 1 ) ) ) |
| 83 |
4 21
|
syl |
|- ( ph -> ( # ` T ) e. NN0 ) |
| 84 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 85 |
83 84
|
eleqtrdi |
|- ( ph -> ( # ` T ) e. ( ZZ>= ` 0 ) ) |
| 86 |
|
fzosplitsn |
|- ( ( # ` T ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( # ` T ) + 1 ) ) = ( ( 0 ..^ ( # ` T ) ) u. { ( # ` T ) } ) ) |
| 87 |
85 86
|
syl |
|- ( ph -> ( 0 ..^ ( ( # ` T ) + 1 ) ) = ( ( 0 ..^ ( # ` T ) ) u. { ( # ` T ) } ) ) |
| 88 |
82 87
|
eqtrd |
|- ( ph -> dom ( T ++ <" X "> ) = ( ( 0 ..^ ( # ` T ) ) u. { ( # ` T ) } ) ) |
| 89 |
88
|
difeq1d |
|- ( ph -> ( dom ( T ++ <" X "> ) \ { 0 } ) = ( ( ( 0 ..^ ( # ` T ) ) u. { ( # ` T ) } ) \ { 0 } ) ) |
| 90 |
|
difundir |
|- ( ( ( 0 ..^ ( # ` T ) ) u. { ( # ` T ) } ) \ { 0 } ) = ( ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) u. ( { ( # ` T ) } \ { 0 } ) ) |
| 91 |
89 90
|
eqtrdi |
|- ( ph -> ( dom ( T ++ <" X "> ) \ { 0 } ) = ( ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) u. ( { ( # ` T ) } \ { 0 } ) ) ) |
| 92 |
91
|
eleq2d |
|- ( ph -> ( n e. ( dom ( T ++ <" X "> ) \ { 0 } ) <-> n e. ( ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) u. ( { ( # ` T ) } \ { 0 } ) ) ) ) |
| 93 |
92
|
biimpa |
|- ( ( ph /\ n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ) -> n e. ( ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) u. ( { ( # ` T ) } \ { 0 } ) ) ) |
| 94 |
|
elun |
|- ( n e. ( ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) u. ( { ( # ` T ) } \ { 0 } ) ) <-> ( n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) \/ n e. ( { ( # ` T ) } \ { 0 } ) ) ) |
| 95 |
93 94
|
sylib |
|- ( ( ph /\ n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ) -> ( n e. ( ( 0 ..^ ( # ` T ) ) \ { 0 } ) \/ n e. ( { ( # ` T ) } \ { 0 } ) ) ) |
| 96 |
30 77 95
|
mpjaodan |
|- ( ( ph /\ n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ) -> ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 97 |
96
|
ralrimiva |
|- ( ph -> A. n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) |
| 98 |
|
ischn |
|- ( ( T ++ <" X "> ) e. ( .< Chain A ) <-> ( ( T ++ <" X "> ) e. Word A /\ A. n e. ( dom ( T ++ <" X "> ) \ { 0 } ) ( ( T ++ <" X "> ) ` ( n - 1 ) ) .< ( ( T ++ <" X "> ) ` n ) ) ) |
| 99 |
7 97 98
|
sylanbrc |
|- ( ph -> ( T ++ <" X "> ) e. ( .< Chain A ) ) |