| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnccats1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 2 |
|
chnccats1.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( < Chain 𝐴 ) ) |
| 3 |
|
chnccats1.3 |
⊢ ( 𝜑 → ( 𝑇 = ∅ ∨ ( lastS ‘ 𝑇 ) < 𝑋 ) ) |
| 4 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝑇 ∈ Word 𝐴 ) |
| 5 |
1
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝑋 ”〉 ∈ Word 𝐴 ) |
| 6 |
|
ccatcl |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝐴 ) → ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝐴 ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝐴 ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑇 ) ) |
| 9 |
8 4
|
wrdfd |
⊢ ( 𝜑 → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ 𝐴 ) |
| 10 |
9
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 11 |
10
|
difeq1d |
⊢ ( 𝜑 → ( dom 𝑇 ∖ { 0 } ) = ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ↔ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ) |
| 14 |
|
ischn |
⊢ ( 𝑇 ∈ ( < Chain 𝐴 ) ↔ ( 𝑇 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) ) |
| 15 |
2 14
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) ) |
| 16 |
15
|
simprd |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 17 |
16
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom 𝑇 ∖ { 0 } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 18 |
13 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) < ( 𝑇 ‘ 𝑛 ) ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → 𝑇 ∈ Word 𝐴 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) |
| 21 |
|
lencl |
⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 22 |
19 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 23 |
20 22
|
elfzodif0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 24 |
|
ccats1val1 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 25 |
19 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 26 |
20
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 27 |
|
ccats1val1 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 28 |
19 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 29 |
18 25 28
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ) ∧ 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 33 |
|
noel |
⊢ ¬ 𝑛 ∈ ∅ |
| 34 |
|
fveq2 |
⊢ ( 𝑇 = ∅ → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ∅ ) ) |
| 35 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 36 |
34 35
|
eqtrdi |
⊢ ( 𝑇 = ∅ → ( ♯ ‘ 𝑇 ) = 0 ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ( ♯ ‘ 𝑇 ) = 0 ) |
| 38 |
37
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → { ( ♯ ‘ 𝑇 ) } = { 0 } ) |
| 39 |
38
|
difeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) = ( { 0 } ∖ { 0 } ) ) |
| 40 |
|
difid |
⊢ ( { 0 } ∖ { 0 } ) = ∅ |
| 41 |
39 40
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) = ∅ ) |
| 42 |
41
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ( 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ↔ 𝑛 ∈ ∅ ) ) |
| 43 |
33 42
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ¬ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 44 |
32 43
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ 𝑇 = ∅ ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( lastS ‘ 𝑇 ) < 𝑋 ) |
| 46 |
31
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → 𝑛 ∈ { ( ♯ ‘ 𝑇 ) } ) |
| 47 |
46
|
elsnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( 𝑛 − 1 ) = ( ( ♯ ‘ 𝑇 ) − 1 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( 𝑛 − 1 ) = ( ( ♯ ‘ 𝑇 ) − 1 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( 𝑇 ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 51 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → 𝑇 ∈ Word 𝐴 ) |
| 52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → 𝑇 ∈ Word 𝐴 ) |
| 53 |
52 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 54 |
47 31
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ♯ ‘ 𝑇 ) ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 55 |
54
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ¬ ( ♯ ‘ 𝑇 ) ∈ { 0 } ) |
| 56 |
53 55
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ♯ ‘ 𝑇 ) ∈ ( ℕ0 ∖ { 0 } ) ) |
| 57 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| 58 |
56 57
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ♯ ‘ 𝑇 ) ∈ ℕ ) |
| 59 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ( ♯ ‘ 𝑇 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 61 |
48 60
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( 𝑛 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 63 |
51 62 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) = ( 𝑇 ‘ ( 𝑛 − 1 ) ) ) |
| 64 |
|
lsw |
⊢ ( 𝑇 ∈ Word 𝐴 → ( lastS ‘ 𝑇 ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 65 |
51 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( lastS ‘ 𝑇 ) = ( 𝑇 ‘ ( ( ♯ ‘ 𝑇 ) − 1 ) ) ) |
| 66 |
50 63 65
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) = ( lastS ‘ 𝑇 ) ) |
| 67 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → 𝑛 = ( ♯ ‘ 𝑇 ) ) |
| 68 |
67
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) = ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( ♯ ‘ 𝑇 ) ) ) |
| 69 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → 𝑋 ∈ 𝐴 ) |
| 70 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑇 ) ) |
| 71 |
|
ccats1val2 |
⊢ ( ( 𝑇 ∈ Word 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ ( ♯ ‘ 𝑇 ) = ( ♯ ‘ 𝑇 ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( ♯ ‘ 𝑇 ) ) = 𝑋 ) |
| 72 |
51 69 70 71
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( ♯ ‘ 𝑇 ) ) = 𝑋 ) |
| 73 |
68 72
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) = 𝑋 ) |
| 74 |
45 66 73
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ∧ ( lastS ‘ 𝑇 ) < 𝑋 ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 75 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( 𝑇 = ∅ ∨ ( lastS ‘ 𝑇 ) < 𝑋 ) ) |
| 76 |
44 74 75
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 77 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ) ∧ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 78 |
|
ccatws1len |
⊢ ( 𝑇 ∈ Word 𝐴 → ( ♯ ‘ ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑇 ) + 1 ) ) |
| 79 |
4 78
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑇 ) + 1 ) ) |
| 80 |
79
|
eqcomd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑇 ) + 1 ) = ( ♯ ‘ ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ) ) |
| 81 |
80 7
|
wrdfd |
⊢ ( 𝜑 → ( 𝑇 ++ 〈“ 𝑋 ”〉 ) : ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + 1 ) ) ⟶ 𝐴 ) |
| 82 |
81
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) = ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + 1 ) ) ) |
| 83 |
4 21
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
| 84 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 85 |
83 84
|
eleqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ 𝑇 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 86 |
|
fzosplitsn |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∪ { ( ♯ ‘ 𝑇 ) } ) ) |
| 87 |
85 86
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝑇 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∪ { ( ♯ ‘ 𝑇 ) } ) ) |
| 88 |
82 87
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) = ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∪ { ( ♯ ‘ 𝑇 ) } ) ) |
| 89 |
88
|
difeq1d |
⊢ ( 𝜑 → ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) = ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∪ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 } ) ) |
| 90 |
|
difundir |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∪ { ( ♯ ‘ 𝑇 ) } ) ∖ { 0 } ) = ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∪ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) |
| 91 |
89 90
|
eqtrdi |
⊢ ( 𝜑 → ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) = ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∪ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ) |
| 92 |
91
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ↔ 𝑛 ∈ ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∪ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ) ) |
| 93 |
92
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ) → 𝑛 ∈ ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∪ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ) |
| 94 |
|
elun |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∪ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ↔ ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∨ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ) |
| 95 |
93 94
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ) → ( 𝑛 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∖ { 0 } ) ∨ 𝑛 ∈ ( { ( ♯ ‘ 𝑇 ) } ∖ { 0 } ) ) ) |
| 96 |
30 77 95
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ) → ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 97 |
96
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) |
| 98 |
|
ischn |
⊢ ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∈ ( < Chain 𝐴 ) ↔ ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∖ { 0 } ) ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ ( 𝑛 − 1 ) ) < ( ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑛 ) ) ) |
| 99 |
7 97 98
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑇 ++ 〈“ 𝑋 ”〉 ) ∈ ( < Chain 𝐴 ) ) |