| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 2 |
|
s1cl |
⊢ ( 𝑆 ∈ 𝑉 → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) |
| 3 |
2
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) |
| 4 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 5 |
4
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 6 |
|
elfzomin |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 8 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑆 ”〉 ) = 1 |
| 9 |
8
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) |
| 10 |
9
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) = ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 11 |
7 10
|
eleqtrrdi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝐼 = ( ♯ ‘ 𝑊 ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) |
| 15 |
12 14
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) |
| 17 |
|
ccatval2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝑆 ”〉 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) ) |
| 18 |
1 3 16 17
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝐼 = ( ♯ ‘ 𝑊 ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) ) |
| 21 |
4
|
nn0cnd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 22 |
21
|
subidd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 24 |
20 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 𝐼 − ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 〈“ 𝑆 ”〉 ‘ ( 𝐼 − ( ♯ ‘ 𝑊 ) ) ) = ( 〈“ 𝑆 ”〉 ‘ 0 ) ) |
| 26 |
|
s1fv |
⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 ”〉 ‘ 0 ) = 𝑆 ) |
| 27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( 〈“ 𝑆 ”〉 ‘ 0 ) = 𝑆 ) |
| 28 |
18 25 27
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ‘ 𝐼 ) = 𝑆 ) |