Metamath Proof Explorer


Theorem elsnd

Description: There is at most one element in a singleton. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypothesis elsnd.1 ( 𝜑𝐴 ∈ { 𝐵 } )
Assertion elsnd ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elsnd.1 ( 𝜑𝐴 ∈ { 𝐵 } )
2 elsni ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 )
3 1 2 syl ( 𝜑𝐴 = 𝐵 )