Metamath Proof Explorer


Theorem elsnd

Description: There is at most one element in a singleton. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypothesis elsnd.1 φ A B
Assertion elsnd φ A = B

Proof

Step Hyp Ref Expression
1 elsnd.1 φ A B
2 elsni A B A = B
3 1 2 syl φ A = B