| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnccats1.1 |
|
| 2 |
|
chnccats1.2 |
|
| 3 |
|
chnccats1.3 |
|
| 4 |
2
|
chnwrd |
|
| 5 |
1
|
s1cld |
|
| 6 |
|
ccatcl |
|
| 7 |
4 5 6
|
syl2anc |
|
| 8 |
|
eqidd |
|
| 9 |
8 4
|
wrdfd |
|
| 10 |
9
|
fdmd |
|
| 11 |
10
|
difeq1d |
|
| 12 |
11
|
eleq2d |
|
| 13 |
12
|
biimpar |
|
| 14 |
|
ischn |
|
| 15 |
2 14
|
sylib |
|
| 16 |
15
|
simprd |
|
| 17 |
16
|
r19.21bi |
|
| 18 |
13 17
|
syldan |
|
| 19 |
4
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
|
lencl |
|
| 22 |
19 21
|
syl |
|
| 23 |
20 22
|
elfzodif0 |
|
| 24 |
|
ccats1val1 |
|
| 25 |
19 23 24
|
syl2anc |
|
| 26 |
20
|
eldifad |
|
| 27 |
|
ccats1val1 |
|
| 28 |
19 26 27
|
syl2anc |
|
| 29 |
18 25 28
|
3brtr4d |
|
| 30 |
29
|
adantlr |
|
| 31 |
|
simpr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
noel |
|
| 34 |
|
fveq2 |
|
| 35 |
|
hash0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
sneqd |
|
| 39 |
38
|
difeq1d |
|
| 40 |
|
difid |
|
| 41 |
39 40
|
eqtrdi |
|
| 42 |
41
|
eleq2d |
|
| 43 |
33 42
|
mtbiri |
|
| 44 |
32 43
|
pm2.21dd |
|
| 45 |
|
simpr |
|
| 46 |
31
|
eldifad |
|
| 47 |
46
|
elsnd |
|
| 48 |
47
|
oveq1d |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
fveq2d |
|
| 51 |
4
|
ad2antrr |
|
| 52 |
4
|
adantr |
|
| 53 |
52 21
|
syl |
|
| 54 |
47 31
|
eqeltrrd |
|
| 55 |
54
|
eldifbd |
|
| 56 |
53 55
|
eldifd |
|
| 57 |
|
dfn2 |
|
| 58 |
56 57
|
eleqtrrdi |
|
| 59 |
|
fzo0end |
|
| 60 |
58 59
|
syl |
|
| 61 |
48 60
|
eqeltrd |
|
| 62 |
61
|
adantr |
|
| 63 |
51 62 24
|
syl2anc |
|
| 64 |
|
lsw |
|
| 65 |
51 64
|
syl |
|
| 66 |
50 63 65
|
3eqtr4d |
|
| 67 |
47
|
adantr |
|
| 68 |
67
|
fveq2d |
|
| 69 |
1
|
ad2antrr |
|
| 70 |
|
eqidd |
|
| 71 |
|
ccats1val2 |
|
| 72 |
51 69 70 71
|
syl3anc |
|
| 73 |
68 72
|
eqtrd |
|
| 74 |
45 66 73
|
3brtr4d |
|
| 75 |
3
|
adantr |
|
| 76 |
44 74 75
|
mpjaodan |
|
| 77 |
76
|
adantlr |
|
| 78 |
|
ccatws1len |
|
| 79 |
4 78
|
syl |
|
| 80 |
79
|
eqcomd |
|
| 81 |
80 7
|
wrdfd |
|
| 82 |
81
|
fdmd |
|
| 83 |
4 21
|
syl |
|
| 84 |
|
nn0uz |
|
| 85 |
83 84
|
eleqtrdi |
|
| 86 |
|
fzosplitsn |
|
| 87 |
85 86
|
syl |
|
| 88 |
82 87
|
eqtrd |
|
| 89 |
88
|
difeq1d |
|
| 90 |
|
difundir |
|
| 91 |
89 90
|
eqtrdi |
|
| 92 |
91
|
eleq2d |
|
| 93 |
92
|
biimpa |
|
| 94 |
|
elun |
|
| 95 |
93 94
|
sylib |
|
| 96 |
30 77 95
|
mpjaodan |
|
| 97 |
96
|
ralrimiva |
|
| 98 |
|
ischn |
|
| 99 |
7 97 98
|
sylanbrc |
|