Metamath Proof Explorer


Theorem elfzodif0

Description: If an integer M is in an open interval starting at 0 , except 0 , then ( M - 1 ) is also in that interval. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses elfzodif0.m φ M 0 ..^ N 0
elfzodif0.n φ N 0
Assertion elfzodif0 φ M 1 0 ..^ N

Proof

Step Hyp Ref Expression
1 elfzodif0.m φ M 0 ..^ N 0
2 elfzodif0.n φ N 0
3 2 nn0zd φ N
4 fzossrbm1 N 0 ..^ N 1 0 ..^ N
5 3 4 syl φ 0 ..^ N 1 0 ..^ N
6 fzossz 0 ..^ N
7 1 eldifad φ M 0 ..^ N
8 6 7 sselid φ M
9 eldifsni M 0 ..^ N 0 M 0
10 1 9 syl φ M 0
11 fzo1fzo0n0 M 1 ..^ N M 0 ..^ N M 0
12 7 10 11 sylanbrc φ M 1 ..^ N
13 elfzom1b M N M 1 ..^ N M 1 0 ..^ N 1
14 13 biimpa M N M 1 ..^ N M 1 0 ..^ N 1
15 8 3 12 14 syl21anc φ M 1 0 ..^ N 1
16 5 15 sseldd φ M 1 0 ..^ N