Metamath Proof Explorer


Theorem elfzom1b

Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion elfzom1b KNK1..^NK10..^N1

Proof

Step Hyp Ref Expression
1 peano2zm NN1
2 elfzm1b KN1K1N1K10N-1-1
3 1 2 sylan2 KNK1N1K10N-1-1
4 fzoval N1..^N=1N1
5 4 adantl KN1..^N=1N1
6 5 eleq2d KNK1..^NK1N1
7 1 adantl KNN1
8 fzoval N10..^N1=0N-1-1
9 7 8 syl KN0..^N1=0N-1-1
10 9 eleq2d KNK10..^N1K10N-1-1
11 3 6 10 3bitr4d KNK1..^NK10..^N1