Metamath Proof Explorer


Theorem fzo1fzo0n0

Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018)

Ref Expression
Assertion fzo1fzo0n0 K1..^NK0..^NK0

Proof

Step Hyp Ref Expression
1 elfzo2 K1..^NK1NK<N
2 elnnuz KK1
3 nnnn0 KK0
4 3 adantr KNK0
5 4 adantr KNK<NK0
6 nngt0 K0<K
7 0red NK0
8 nnre KK
9 8 adantl NKK
10 zre NN
11 10 adantr NKN
12 lttr 0KN0<KK<N0<N
13 7 9 11 12 syl3anc NK0<KK<N0<N
14 elnnz NN0<N
15 14 simplbi2 N0<NN
16 15 adantr NK0<NN
17 13 16 syld NK0<KK<NN
18 17 exp4b NK0<KK<NN
19 18 com13 0<KKNK<NN
20 6 19 mpcom KNK<NN
21 20 imp31 KNK<NN
22 simpr KNK<NK<N
23 5 21 22 3jca KNK<NK0NK<N
24 23 exp31 KNK<NK0NK<N
25 2 24 sylbir K1NK<NK0NK<N
26 25 3imp K1NK<NK0NK<N
27 elfzo0 K0..^NK0NK<N
28 26 27 sylibr K1NK<NK0..^N
29 nnne0 KK0
30 2 29 sylbir K1K0
31 30 3ad2ant1 K1NK<NK0
32 28 31 jca K1NK<NK0..^NK0
33 1 32 sylbi K1..^NK0..^NK0
34 elnnne0 KK0K0
35 nnge1 K1K
36 34 35 sylbir K0K01K
37 36 3ad2antl1 K0NK<NK01K
38 simpl3 K0NK<NK0K<N
39 nn0z K0K
40 39 adantr K0NK
41 1zzd K0N1
42 nnz NN
43 42 adantl K0NN
44 40 41 43 3jca K0NK1N
45 44 3adant3 K0NK<NK1N
46 45 adantr K0NK<NK0K1N
47 elfzo K1NK1..^N1KK<N
48 46 47 syl K0NK<NK0K1..^N1KK<N
49 37 38 48 mpbir2and K0NK<NK0K1..^N
50 27 49 sylanb K0..^NK0K1..^N
51 33 50 impbii K1..^NK0..^NK0