| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzodif0.m |
|- ( ph -> M e. ( ( 0 ..^ N ) \ { 0 } ) ) |
| 2 |
|
elfzodif0.n |
|- ( ph -> N e. NN0 ) |
| 3 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 4 |
|
fzossrbm1 |
|- ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 6 |
|
fzossz |
|- ( 0 ..^ N ) C_ ZZ |
| 7 |
1
|
eldifad |
|- ( ph -> M e. ( 0 ..^ N ) ) |
| 8 |
6 7
|
sselid |
|- ( ph -> M e. ZZ ) |
| 9 |
|
eldifsni |
|- ( M e. ( ( 0 ..^ N ) \ { 0 } ) -> M =/= 0 ) |
| 10 |
1 9
|
syl |
|- ( ph -> M =/= 0 ) |
| 11 |
|
fzo1fzo0n0 |
|- ( M e. ( 1 ..^ N ) <-> ( M e. ( 0 ..^ N ) /\ M =/= 0 ) ) |
| 12 |
7 10 11
|
sylanbrc |
|- ( ph -> M e. ( 1 ..^ N ) ) |
| 13 |
|
elfzom1b |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( 1 ..^ N ) <-> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) ) |
| 14 |
13
|
biimpa |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ( 1 ..^ N ) ) -> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 15 |
8 3 12 14
|
syl21anc |
|- ( ph -> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 16 |
5 15
|
sseldd |
|- ( ph -> ( M - 1 ) e. ( 0 ..^ N ) ) |