Metamath Proof Explorer


Theorem fzosplitsn

Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion fzosplitsn B A A ..^ B + 1 = A ..^ B B

Proof

Step Hyp Ref Expression
1 id B A B A
2 eluzelz B A B
3 uzid B B B
4 peano2uz B B B + 1 B
5 2 3 4 3syl B A B + 1 B
6 elfzuzb B A B + 1 B A B + 1 B
7 1 5 6 sylanbrc B A B A B + 1
8 fzosplit B A B + 1 A ..^ B + 1 = A ..^ B B ..^ B + 1
9 7 8 syl B A A ..^ B + 1 = A ..^ B B ..^ B + 1
10 fzosn B B ..^ B + 1 = B
11 2 10 syl B A B ..^ B + 1 = B
12 11 uneq2d B A A ..^ B B ..^ B + 1 = A ..^ B B
13 9 12 eqtrd B A A ..^ B + 1 = A ..^ B B