Metamath Proof Explorer


Theorem fzosplitpr

Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion fzosplitpr BAA..^B+2=A..^BBB+1

Proof

Step Hyp Ref Expression
1 df-2 2=1+1
2 1 a1i BA2=1+1
3 2 oveq2d BAB+2=B+1+1
4 eluzelcn BAB
5 1cnd BA1
6 add32r B11B+1+1=B+1+1
7 4 5 5 6 syl3anc BAB+1+1=B+1+1
8 3 7 eqtrd BAB+2=B+1+1
9 8 oveq2d BAA..^B+2=A..^B+1+1
10 peano2uz BAB+1A
11 fzosplitsn B+1AA..^B+1+1=A..^B+1B+1
12 10 11 syl BAA..^B+1+1=A..^B+1B+1
13 fzosplitsn BAA..^B+1=A..^BB
14 13 uneq1d BAA..^B+1B+1=A..^BBB+1
15 unass A..^BBB+1=A..^BBB+1
16 15 a1i BAA..^BBB+1=A..^BBB+1
17 df-pr BB+1=BB+1
18 17 eqcomi BB+1=BB+1
19 18 a1i BABB+1=BB+1
20 19 uneq2d BAA..^BBB+1=A..^BBB+1
21 14 16 20 3eqtrd BAA..^B+1B+1=A..^BBB+1
22 9 12 21 3eqtrd BAA..^B+2=A..^BBB+1