| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  2  =  ( 1  +  1 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  2 )  =  ( 𝐵  +  ( 1  +  1 ) ) ) | 
						
							| 4 |  | eluzelcn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | 1cnd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  1  ∈  ℂ ) | 
						
							| 6 |  | add32r | ⊢ ( ( 𝐵  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐵  +  ( 1  +  1 ) )  =  ( ( 𝐵  +  1 )  +  1 ) ) | 
						
							| 7 | 4 5 5 6 | syl3anc | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  ( 1  +  1 ) )  =  ( ( 𝐵  +  1 )  +  1 ) ) | 
						
							| 8 | 3 7 | eqtrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  2 )  =  ( ( 𝐵  +  1 )  +  1 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( 𝐵  +  2 ) )  =  ( 𝐴 ..^ ( ( 𝐵  +  1 )  +  1 ) ) ) | 
						
							| 10 |  | peano2uz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐵  +  1 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 11 |  | fzosplitsn | ⊢ ( ( 𝐵  +  1 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( ( 𝐵  +  1 )  +  1 ) )  =  ( ( 𝐴 ..^ ( 𝐵  +  1 ) )  ∪  { ( 𝐵  +  1 ) } ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( ( 𝐵  +  1 )  +  1 ) )  =  ( ( 𝐴 ..^ ( 𝐵  +  1 ) )  ∪  { ( 𝐵  +  1 ) } ) ) | 
						
							| 13 |  | fzosplitsn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( 𝐵  +  1 ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } ) ) | 
						
							| 14 | 13 | uneq1d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐴 ..^ ( 𝐵  +  1 ) )  ∪  { ( 𝐵  +  1 ) } )  =  ( ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } )  ∪  { ( 𝐵  +  1 ) } ) ) | 
						
							| 15 |  | unass | ⊢ ( ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } )  ∪  { ( 𝐵  +  1 ) } )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 } )  ∪  { ( 𝐵  +  1 ) } )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } ) ) ) | 
						
							| 17 |  | df-pr | ⊢ { 𝐵 ,  ( 𝐵  +  1 ) }  =  ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } ) | 
						
							| 18 | 17 | eqcomi | ⊢ ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } )  =  { 𝐵 ,  ( 𝐵  +  1 ) } | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } )  =  { 𝐵 ,  ( 𝐵  +  1 ) } ) | 
						
							| 20 | 19 | uneq2d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐴 ..^ 𝐵 )  ∪  ( { 𝐵 }  ∪  { ( 𝐵  +  1 ) } ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 ,  ( 𝐵  +  1 ) } ) ) | 
						
							| 21 | 14 16 20 | 3eqtrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝐴 ..^ ( 𝐵  +  1 ) )  ∪  { ( 𝐵  +  1 ) } )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 ,  ( 𝐵  +  1 ) } ) ) | 
						
							| 22 | 9 12 21 | 3eqtrd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( 𝐴 ..^ ( 𝐵  +  2 ) )  =  ( ( 𝐴 ..^ 𝐵 )  ∪  { 𝐵 ,  ( 𝐵  +  1 ) } ) ) |