Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
2 |
|
constrelextdg2.k |
|- K = ( CCfld |`s F ) |
3 |
|
constrelextdg2.l |
|- L = ( CCfld |`s ( CCfld fldGen ( F u. { X } ) ) ) |
4 |
|
constrelextdg2.f |
|- ( ph -> F e. ( SubDRing ` CCfld ) ) |
5 |
|
constrelextdg2.n |
|- ( ph -> N e. On ) |
6 |
|
constrelextdg2.1 |
|- ( ph -> ( C ` N ) C_ F ) |
7 |
|
constrelextdg2.x |
|- ( ph -> X e. ( C ` suc N ) ) |
8 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
9 |
8
|
sdrgss |
|- ( F e. ( SubDRing ` CCfld ) -> F C_ CC ) |
10 |
4 9
|
syl |
|- ( ph -> F C_ CC ) |
11 |
10
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> F C_ CC ) |
12 |
6
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( C ` N ) C_ F ) |
13 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> a e. ( C ` N ) ) |
14 |
12 13
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> a e. F ) |
15 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> b e. ( C ` N ) ) |
16 |
12 15
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> b e. F ) |
17 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> c e. ( C ` N ) ) |
18 |
12 17
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> c e. F ) |
19 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> d e. ( C ` N ) ) |
20 |
12 19
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> d e. F ) |
21 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> t e. RR ) |
22 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> r e. RR ) |
23 |
|
simpr1 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> X = ( a + ( t x. ( b - a ) ) ) ) |
24 |
|
simpr2 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> X = ( c + ( r x. ( d - c ) ) ) ) |
25 |
|
simpr3 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) |
26 |
|
eqid |
|- ( a + ( ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) x. ( b - a ) ) ) = ( a + ( ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) x. ( b - a ) ) ) |
27 |
11 14 16 18 20 21 22 23 24 25 26
|
constrrtll |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> X = ( a + ( ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) x. ( b - a ) ) ) ) |
28 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
29 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` CCfld ) -> F e. ( SubRing ` CCfld ) ) |
30 |
|
subrgsubg |
|- ( F e. ( SubRing ` CCfld ) -> F e. ( SubGrp ` CCfld ) ) |
31 |
4 29 30
|
3syl |
|- ( ph -> F e. ( SubGrp ` CCfld ) ) |
32 |
31
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> F e. ( SubGrp ` CCfld ) ) |
33 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
34 |
4 29
|
syl |
|- ( ph -> F e. ( SubRing ` CCfld ) ) |
35 |
34
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> F e. ( SubRing ` CCfld ) ) |
36 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
37 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
38 |
4
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> F e. ( SubDRing ` CCfld ) ) |
39 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
40 |
39 32 14 18
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( a - c ) e. F ) |
41 |
5
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> N e. On ) |
42 |
1 41 19
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` d ) e. ( C ` N ) ) |
43 |
12 42
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` d ) e. F ) |
44 |
1 41 17
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` c ) e. ( C ` N ) ) |
45 |
12 44
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` c ) e. F ) |
46 |
39 32 43 45
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` d ) - ( * ` c ) ) e. F ) |
47 |
33 35 40 46
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) e. F ) |
48 |
1 41 13
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` a ) e. ( C ` N ) ) |
49 |
12 48
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` a ) e. F ) |
50 |
39 32 49 45
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` a ) - ( * ` c ) ) e. F ) |
51 |
39 32 20 18
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( d - c ) e. F ) |
52 |
33 35 50 51
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) e. F ) |
53 |
39 32 47 52
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) e. F ) |
54 |
1 41 15
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` b ) e. ( C ` N ) ) |
55 |
12 54
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` b ) e. F ) |
56 |
39 32 55 49
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` b ) - ( * ` a ) ) e. F ) |
57 |
33 35 56 51
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) e. F ) |
58 |
39 32 16 14
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( b - a ) e. F ) |
59 |
33 35 58 46
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) e. F ) |
60 |
39 32 57 59
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) e. F ) |
61 |
11 16
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> b e. CC ) |
62 |
11 14
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> a e. CC ) |
63 |
61 62
|
cjsubd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( b - a ) ) = ( ( * ` b ) - ( * ` a ) ) ) |
64 |
63
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` ( b - a ) ) x. ( d - c ) ) = ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) ) |
65 |
11 58
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( b - a ) e. CC ) |
66 |
65
|
cjcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( b - a ) ) e. CC ) |
67 |
11 51
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( d - c ) e. CC ) |
68 |
66 67
|
cjmuld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = ( ( * ` ( * ` ( b - a ) ) ) x. ( * ` ( d - c ) ) ) ) |
69 |
65
|
cjcjd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( * ` ( b - a ) ) ) = ( b - a ) ) |
70 |
11 20
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> d e. CC ) |
71 |
11 18
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> c e. CC ) |
72 |
70 71
|
cjsubd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( d - c ) ) = ( ( * ` d ) - ( * ` c ) ) ) |
73 |
69 72
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` ( * ` ( b - a ) ) ) x. ( * ` ( d - c ) ) ) = ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) |
74 |
68 73
|
eqtrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) |
75 |
64 74
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) = ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) |
76 |
66 67
|
mulcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( * ` ( b - a ) ) x. ( d - c ) ) e. CC ) |
77 |
|
imval2 |
|- ( ( ( * ` ( b - a ) ) x. ( d - c ) ) e. CC -> ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) / ( 2 x. _i ) ) ) |
78 |
76 77
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) / ( 2 x. _i ) ) ) |
79 |
78
|
neeq1d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 <-> ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) / ( 2 x. _i ) ) =/= 0 ) ) |
80 |
25 79
|
mpbid |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) / ( 2 x. _i ) ) =/= 0 ) |
81 |
76
|
cjcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) e. CC ) |
82 |
76 81
|
subcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) e. CC ) |
83 |
|
2cnd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> 2 e. CC ) |
84 |
|
ax-icn |
|- _i e. CC |
85 |
84
|
a1i |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> _i e. CC ) |
86 |
83 85
|
mulcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( 2 x. _i ) e. CC ) |
87 |
|
2cn |
|- 2 e. CC |
88 |
|
2ne0 |
|- 2 =/= 0 |
89 |
|
ine0 |
|- _i =/= 0 |
90 |
87 84 88 89
|
mulne0i |
|- ( 2 x. _i ) =/= 0 |
91 |
90
|
a1i |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( 2 x. _i ) =/= 0 ) |
92 |
82 86 91
|
divne0bd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) =/= 0 <-> ( ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) / ( 2 x. _i ) ) =/= 0 ) ) |
93 |
80 92
|
mpbird |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( * ` ( b - a ) ) x. ( d - c ) ) - ( * ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) ) =/= 0 ) |
94 |
75 93
|
eqnetrrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) =/= 0 ) |
95 |
36 37 38 53 60 94
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) e. F ) |
96 |
33 35 95 58
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) x. ( b - a ) ) e. F ) |
97 |
28 32 14 96
|
subgcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( a + ( ( ( ( ( a - c ) x. ( ( * ` d ) - ( * ` c ) ) ) - ( ( ( * ` a ) - ( * ` c ) ) x. ( d - c ) ) ) / ( ( ( ( * ` b ) - ( * ` a ) ) x. ( d - c ) ) - ( ( b - a ) x. ( ( * ` d ) - ( * ` c ) ) ) ) ) x. ( b - a ) ) ) e. F ) |
98 |
27 97
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> X e. F ) |
99 |
98
|
orcd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ r e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
100 |
99
|
r19.29an |
|- ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ t e. RR ) /\ E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
101 |
100
|
r19.29an |
|- ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
102 |
101
|
r19.29an |
|- ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
103 |
102
|
r19.29an |
|- ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
104 |
103
|
r19.29an |
|- ( ( ( ph /\ a e. ( C ` N ) ) /\ E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
105 |
104
|
r19.29an |
|- ( ( ph /\ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
106 |
1 5
|
constrsscn |
|- ( ph -> ( C ` N ) C_ CC ) |
107 |
106
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> ( C ` N ) C_ CC ) |
108 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> a e. ( C ` N ) ) |
109 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> b e. ( C ` N ) ) |
110 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> c e. ( C ` N ) ) |
111 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> e e. ( C ` N ) ) |
112 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> f e. ( C ` N ) ) |
113 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> t e. RR ) |
114 |
|
simplrl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> X = ( a + ( t x. ( b - a ) ) ) ) |
115 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) |
116 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> a = b ) |
117 |
107 108 109 110 111 112 113 114 115 116
|
constrrtlc2 |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> X = a ) |
118 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> ( C ` N ) C_ F ) |
119 |
118 108
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> a e. F ) |
120 |
117 119
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> X e. F ) |
121 |
120
|
orcd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a = b ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
122 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
123 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
124 |
|
cnfldfld |
|- CCfld e. Field |
125 |
124
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> CCfld e. Field ) |
126 |
4
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> F e. ( SubDRing ` CCfld ) ) |
127 |
|
eqid |
|- ( C ` N ) = ( C ` N ) |
128 |
1 5 127
|
constrsuc |
|- ( ph -> ( X e. ( C ` suc N ) <-> ( X e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
129 |
7 128
|
mpbid |
|- ( ph -> ( X e. CC /\ ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) |
130 |
129
|
simpld |
|- ( ph -> X e. CC ) |
131 |
130
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> X e. CC ) |
132 |
31
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> F e. ( SubGrp ` CCfld ) ) |
133 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( C ` N ) C_ F ) |
134 |
5
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> N e. On ) |
135 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> a e. ( C ` N ) ) |
136 |
1 134 135
|
constrconj |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` a ) e. ( C ` N ) ) |
137 |
133 136
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` a ) e. F ) |
138 |
126 29
|
syl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> F e. ( SubRing ` CCfld ) ) |
139 |
133 135
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> a e. F ) |
140 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> b e. ( C ` N ) ) |
141 |
1 134 140
|
constrconj |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` b ) e. ( C ` N ) ) |
142 |
133 141
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` b ) e. F ) |
143 |
39 132 142 137
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( * ` b ) - ( * ` a ) ) e. F ) |
144 |
133 140
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> b e. F ) |
145 |
39 132 144 139
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( b - a ) e. F ) |
146 |
106
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( C ` N ) C_ CC ) |
147 |
146 140
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> b e. CC ) |
148 |
146 135
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> a e. CC ) |
149 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> a =/= b ) |
150 |
149
|
necomd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> b =/= a ) |
151 |
147 148 150
|
subne0d |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( b - a ) =/= 0 ) |
152 |
36 37 126 143 145 151
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) e. F ) |
153 |
33 138 139 152
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) e. F ) |
154 |
39 132 137 153
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) e. F ) |
155 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> c e. ( C ` N ) ) |
156 |
1 134 155
|
constrconj |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` c ) e. ( C ` N ) ) |
157 |
133 156
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` c ) e. F ) |
158 |
39 132 154 157
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) e. F ) |
159 |
133 155
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> c e. F ) |
160 |
33 138 159 152
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) e. F ) |
161 |
39 132 158 160
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) e. F ) |
162 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> e e. ( C ` N ) ) |
163 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> f e. ( C ` N ) ) |
164 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> t e. RR ) |
165 |
|
simplrl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> X = ( a + ( t x. ( b - a ) ) ) ) |
166 |
|
simplrr |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) |
167 |
|
eqid |
|- ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) = ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) |
168 |
|
eqid |
|- ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) = ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) |
169 |
|
eqid |
|- ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) = ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) |
170 |
146 135 140 155 162 163 164 165 166 167 168 169 149
|
constrrtlc1 |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( X ^ 2 ) + ( ( ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) x. X ) + ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) ) = 0 /\ ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) =/= 0 ) ) |
171 |
170
|
simprd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) =/= 0 ) |
172 |
36 37 126 161 152 171
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) e. F ) |
173 |
|
df-neg |
|- -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) = ( 0 - ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) ) |
174 |
1 134
|
constr01 |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> { 0 , 1 } C_ ( C ` N ) ) |
175 |
37
|
fvexi |
|- 0 e. _V |
176 |
175
|
prid1 |
|- 0 e. { 0 , 1 } |
177 |
176
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> 0 e. { 0 , 1 } ) |
178 |
174 177
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> 0 e. ( C ` N ) ) |
179 |
133 178
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> 0 e. F ) |
180 |
33 138 159 158
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) e. F ) |
181 |
133 162
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> e e. F ) |
182 |
133 163
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> f e. F ) |
183 |
39 132 181 182
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( e - f ) e. F ) |
184 |
1 134 162
|
constrconj |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` e ) e. ( C ` N ) ) |
185 |
133 184
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` e ) e. F ) |
186 |
1 134 163
|
constrconj |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` f ) e. ( C ` N ) ) |
187 |
133 186
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( * ` f ) e. F ) |
188 |
39 132 185 187
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( * ` e ) - ( * ` f ) ) e. F ) |
189 |
33 138 183 188
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) e. F ) |
190 |
28 132 180 189
|
subgcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) e. F ) |
191 |
39 132 179 190
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( 0 - ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) ) e. F ) |
192 |
173 191
|
eqeltrid |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) e. F ) |
193 |
36 37 126 192 152 171
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) e. F ) |
194 |
|
2nn0 |
|- 2 e. NN0 |
195 |
194
|
a1i |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> 2 e. NN0 ) |
196 |
|
cnfldexp |
|- ( ( X e. CC /\ 2 e. NN0 ) -> ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) = ( X ^ 2 ) ) |
197 |
131 195 196
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) = ( X ^ 2 ) ) |
198 |
197
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) + ( ( ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) x. X ) + ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) ) = ( ( X ^ 2 ) + ( ( ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) x. X ) + ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) ) ) |
199 |
170
|
simpld |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( X ^ 2 ) + ( ( ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) x. X ) + ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) ) = 0 ) |
200 |
198 199
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) + ( ( ( ( ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) - ( c x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) x. X ) + ( -u ( ( c x. ( ( ( * ` a ) - ( a x. ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) - ( * ` c ) ) ) + ( ( e - f ) x. ( ( * ` e ) - ( * ` f ) ) ) ) / ( ( ( * ` b ) - ( * ` a ) ) / ( b - a ) ) ) ) ) = 0 ) |
201 |
2 3 37 122 8 33 28 123 125 126 131 172 193 200
|
rtelextdg2 |
|- ( ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) /\ a =/= b ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
202 |
|
exmidne |
|- ( a = b \/ a =/= b ) |
203 |
202
|
a1i |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( a = b \/ a =/= b ) ) |
204 |
121 201 203
|
mpjaodan |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ t e. RR ) /\ ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
205 |
204
|
r19.29an |
|- ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
206 |
205
|
r19.29an |
|- ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
207 |
206
|
r19.29an |
|- ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
208 |
207
|
r19.29an |
|- ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
209 |
208
|
r19.29an |
|- ( ( ( ph /\ a e. ( C ` N ) ) /\ E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
210 |
209
|
r19.29an |
|- ( ( ph /\ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
211 |
124
|
a1i |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> CCfld e. Field ) |
212 |
4
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> F e. ( SubDRing ` CCfld ) ) |
213 |
130
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> X e. CC ) |
214 |
212 29 30
|
3syl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> F e. ( SubGrp ` CCfld ) ) |
215 |
212 29
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> F e. ( SubRing ` CCfld ) ) |
216 |
6
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( C ` N ) C_ F ) |
217 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> e e. ( C ` N ) ) |
218 |
216 217
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> e e. F ) |
219 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> f e. ( C ` N ) ) |
220 |
216 219
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> f e. F ) |
221 |
39 214 218 220
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( e - f ) e. F ) |
222 |
106
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( C ` N ) C_ CC ) |
223 |
222 217
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> e e. CC ) |
224 |
222 219
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> f e. CC ) |
225 |
223 224
|
cjsubd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( e - f ) ) = ( ( * ` e ) - ( * ` f ) ) ) |
226 |
5
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> N e. On ) |
227 |
1 226 217
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` e ) e. ( C ` N ) ) |
228 |
216 227
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` e ) e. F ) |
229 |
1 226 219
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` f ) e. ( C ` N ) ) |
230 |
216 229
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` f ) e. F ) |
231 |
39 214 228 230
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` e ) - ( * ` f ) ) e. F ) |
232 |
225 231
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( e - f ) ) e. F ) |
233 |
33 215 221 232
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( e - f ) x. ( * ` ( e - f ) ) ) e. F ) |
234 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> d e. ( C ` N ) ) |
235 |
1 226 234
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` d ) e. ( C ` N ) ) |
236 |
216 235
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` d ) e. F ) |
237 |
216 234
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> d e. F ) |
238 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> a e. ( C ` N ) ) |
239 |
216 238
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> a e. F ) |
240 |
28 214 237 239
|
subgcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( d + a ) e. F ) |
241 |
33 215 236 240
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` d ) x. ( d + a ) ) e. F ) |
242 |
39 214 233 241
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) e. F ) |
243 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> b e. ( C ` N ) ) |
244 |
216 243
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> b e. F ) |
245 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> c e. ( C ` N ) ) |
246 |
216 245
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> c e. F ) |
247 |
39 214 244 246
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( b - c ) e. F ) |
248 |
222 243
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> b e. CC ) |
249 |
222 245
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> c e. CC ) |
250 |
248 249
|
cjsubd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( b - c ) ) = ( ( * ` b ) - ( * ` c ) ) ) |
251 |
1 226 243
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` b ) e. ( C ` N ) ) |
252 |
216 251
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` b ) e. F ) |
253 |
1 226 245
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` c ) e. ( C ` N ) ) |
254 |
216 253
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` c ) e. F ) |
255 |
39 214 252 254
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` b ) - ( * ` c ) ) e. F ) |
256 |
250 255
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( b - c ) ) e. F ) |
257 |
33 215 247 256
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( b - c ) x. ( * ` ( b - c ) ) ) e. F ) |
258 |
1 226 238
|
constrconj |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` a ) e. ( C ` N ) ) |
259 |
216 258
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` a ) e. F ) |
260 |
33 215 259 240
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` a ) x. ( d + a ) ) e. F ) |
261 |
39 214 257 260
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) e. F ) |
262 |
39 214 242 261
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) e. F ) |
263 |
39 214 236 259
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` d ) - ( * ` a ) ) e. F ) |
264 |
222 234
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> d e. CC ) |
265 |
222 238
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> a e. CC ) |
266 |
264 265
|
cjsubd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( d - a ) ) = ( ( * ` d ) - ( * ` a ) ) ) |
267 |
264 265
|
subcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( d - a ) e. CC ) |
268 |
|
simpr1 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> a =/= d ) |
269 |
268
|
necomd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> d =/= a ) |
270 |
264 265 269
|
subne0d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( d - a ) =/= 0 ) |
271 |
267 270
|
cjne0d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( * ` ( d - a ) ) =/= 0 ) |
272 |
266 271
|
eqnetrrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` d ) - ( * ` a ) ) =/= 0 ) |
273 |
36 37 212 262 263 272
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) e. F ) |
274 |
|
df-neg |
|- -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) = ( 0 - ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) |
275 |
1 226
|
constr01 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> { 0 , 1 } C_ ( C ` N ) ) |
276 |
176
|
a1i |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> 0 e. { 0 , 1 } ) |
277 |
275 276
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> 0 e. ( C ` N ) ) |
278 |
216 277
|
sseldd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> 0 e. F ) |
279 |
33 215 237 239
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( d x. a ) e. F ) |
280 |
33 215 259 279
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` a ) x. ( d x. a ) ) e. F ) |
281 |
33 215 257 237
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) e. F ) |
282 |
39 214 280 281
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) e. F ) |
283 |
33 215 236 279
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( * ` d ) x. ( d x. a ) ) e. F ) |
284 |
33 215 233 239
|
subrgmcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) e. F ) |
285 |
39 214 283 284
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) e. F ) |
286 |
39 214 282 285
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) e. F ) |
287 |
36 37 212 286 263 272
|
sdrgdvcl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) e. F ) |
288 |
39 214 278 287
|
subgsubcld |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( 0 - ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) e. F ) |
289 |
274 288
|
eqeltrid |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) e. F ) |
290 |
213 194 196
|
sylancl |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) = ( X ^ 2 ) ) |
291 |
290
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) + ( ( ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) x. X ) + -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) ) = ( ( X ^ 2 ) + ( ( ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) x. X ) + -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) ) ) |
292 |
|
simpr2 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) ) |
293 |
|
simpr3 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) |
294 |
|
eqid |
|- ( ( b - c ) x. ( * ` ( b - c ) ) ) = ( ( b - c ) x. ( * ` ( b - c ) ) ) |
295 |
|
eqid |
|- ( ( e - f ) x. ( * ` ( e - f ) ) ) = ( ( e - f ) x. ( * ` ( e - f ) ) ) |
296 |
|
eqid |
|- ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) = ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) |
297 |
|
eqid |
|- -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) = -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) |
298 |
222 238 243 245 234 217 219 213 268 292 293 294 295 296 297
|
constrrtcc |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( X ^ 2 ) + ( ( ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) x. X ) + -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) ) = 0 ) |
299 |
291 298
|
eqtrd |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( ( 2 ( .g ` ( mulGrp ` CCfld ) ) X ) + ( ( ( ( ( ( ( e - f ) x. ( * ` ( e - f ) ) ) - ( ( * ` d ) x. ( d + a ) ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) - ( ( * ` a ) x. ( d + a ) ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) x. X ) + -u ( ( ( ( ( * ` a ) x. ( d x. a ) ) - ( ( ( b - c ) x. ( * ` ( b - c ) ) ) x. d ) ) - ( ( ( * ` d ) x. ( d x. a ) ) - ( ( ( e - f ) x. ( * ` ( e - f ) ) ) x. a ) ) ) / ( ( * ` d ) - ( * ` a ) ) ) ) ) = 0 ) |
300 |
2 3 37 122 8 33 28 123 211 212 213 273 289 299
|
rtelextdg2 |
|- ( ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ f e. ( C ` N ) ) /\ ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
301 |
300
|
r19.29an |
|- ( ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ e e. ( C ` N ) ) /\ E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
302 |
301
|
r19.29an |
|- ( ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ d e. ( C ` N ) ) /\ E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
303 |
302
|
r19.29an |
|- ( ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ c e. ( C ` N ) ) /\ E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
304 |
303
|
r19.29an |
|- ( ( ( ( ph /\ a e. ( C ` N ) ) /\ b e. ( C ` N ) ) /\ E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
305 |
304
|
r19.29an |
|- ( ( ( ph /\ a e. ( C ` N ) ) /\ E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
306 |
305
|
r19.29an |
|- ( ( ph /\ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) -> ( X e. F \/ ( L [:] K ) = 2 ) ) |
307 |
129
|
simprd |
|- ( ph -> ( E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` N ) E. b e. ( C ` N ) E. c e. ( C ` N ) E. d e. ( C ` N ) E. e e. ( C ` N ) E. f e. ( C ` N ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
308 |
105 210 306 307
|
mpjao3dan |
|- ( ph -> ( X e. F \/ ( L [:] K ) = 2 ) ) |