Metamath Proof Explorer


Theorem constrrtlc2

Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses constrrtlc.s
|- ( ph -> S C_ CC )
constrrtlc.a
|- ( ph -> A e. S )
constrrtlc.b
|- ( ph -> B e. S )
constrrtlc.c
|- ( ph -> C e. S )
constrrtlc.e
|- ( ph -> E e. S )
constrrtlc.f
|- ( ph -> F e. S )
constrrtlc.t
|- ( ph -> T e. RR )
constrrtlc.1
|- ( ph -> X = ( A + ( T x. ( B - A ) ) ) )
constrrtlc.2
|- ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) )
constrrtlc2.1
|- ( ph -> A = B )
Assertion constrrtlc2
|- ( ph -> X = A )

Proof

Step Hyp Ref Expression
1 constrrtlc.s
 |-  ( ph -> S C_ CC )
2 constrrtlc.a
 |-  ( ph -> A e. S )
3 constrrtlc.b
 |-  ( ph -> B e. S )
4 constrrtlc.c
 |-  ( ph -> C e. S )
5 constrrtlc.e
 |-  ( ph -> E e. S )
6 constrrtlc.f
 |-  ( ph -> F e. S )
7 constrrtlc.t
 |-  ( ph -> T e. RR )
8 constrrtlc.1
 |-  ( ph -> X = ( A + ( T x. ( B - A ) ) ) )
9 constrrtlc.2
 |-  ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) )
10 constrrtlc2.1
 |-  ( ph -> A = B )
11 1 3 sseldd
 |-  ( ph -> B e. CC )
12 10 eqcomd
 |-  ( ph -> B = A )
13 11 12 subeq0bd
 |-  ( ph -> ( B - A ) = 0 )
14 13 oveq2d
 |-  ( ph -> ( T x. ( B - A ) ) = ( T x. 0 ) )
15 7 recnd
 |-  ( ph -> T e. CC )
16 15 mul01d
 |-  ( ph -> ( T x. 0 ) = 0 )
17 14 16 eqtrd
 |-  ( ph -> ( T x. ( B - A ) ) = 0 )
18 17 oveq2d
 |-  ( ph -> ( A + ( T x. ( B - A ) ) ) = ( A + 0 ) )
19 1 2 sseldd
 |-  ( ph -> A e. CC )
20 19 addridd
 |-  ( ph -> ( A + 0 ) = A )
21 8 18 20 3eqtrd
 |-  ( ph -> X = A )