Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | constrrtlc.s | |- ( ph -> S C_ CC ) |
|
constrrtlc.a | |- ( ph -> A e. S ) |
||
constrrtlc.b | |- ( ph -> B e. S ) |
||
constrrtlc.c | |- ( ph -> C e. S ) |
||
constrrtlc.e | |- ( ph -> E e. S ) |
||
constrrtlc.f | |- ( ph -> F e. S ) |
||
constrrtlc.t | |- ( ph -> T e. RR ) |
||
constrrtlc.1 | |- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
||
constrrtlc.2 | |- ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) ) |
||
constrrtlc2.1 | |- ( ph -> A = B ) |
||
Assertion | constrrtlc2 | |- ( ph -> X = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constrrtlc.s | |- ( ph -> S C_ CC ) |
|
2 | constrrtlc.a | |- ( ph -> A e. S ) |
|
3 | constrrtlc.b | |- ( ph -> B e. S ) |
|
4 | constrrtlc.c | |- ( ph -> C e. S ) |
|
5 | constrrtlc.e | |- ( ph -> E e. S ) |
|
6 | constrrtlc.f | |- ( ph -> F e. S ) |
|
7 | constrrtlc.t | |- ( ph -> T e. RR ) |
|
8 | constrrtlc.1 | |- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
|
9 | constrrtlc.2 | |- ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) ) |
|
10 | constrrtlc2.1 | |- ( ph -> A = B ) |
|
11 | 1 3 | sseldd | |- ( ph -> B e. CC ) |
12 | 10 | eqcomd | |- ( ph -> B = A ) |
13 | 11 12 | subeq0bd | |- ( ph -> ( B - A ) = 0 ) |
14 | 13 | oveq2d | |- ( ph -> ( T x. ( B - A ) ) = ( T x. 0 ) ) |
15 | 7 | recnd | |- ( ph -> T e. CC ) |
16 | 15 | mul01d | |- ( ph -> ( T x. 0 ) = 0 ) |
17 | 14 16 | eqtrd | |- ( ph -> ( T x. ( B - A ) ) = 0 ) |
18 | 17 | oveq2d | |- ( ph -> ( A + ( T x. ( B - A ) ) ) = ( A + 0 ) ) |
19 | 1 2 | sseldd | |- ( ph -> A e. CC ) |
20 | 19 | addridd | |- ( ph -> ( A + 0 ) = A ) |
21 | 8 18 20 | 3eqtrd | |- ( ph -> X = A ) |