| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constrrtlc.s |  |-  ( ph -> S C_ CC ) | 
						
							| 2 |  | constrrtlc.a |  |-  ( ph -> A e. S ) | 
						
							| 3 |  | constrrtlc.b |  |-  ( ph -> B e. S ) | 
						
							| 4 |  | constrrtlc.c |  |-  ( ph -> C e. S ) | 
						
							| 5 |  | constrrtlc.e |  |-  ( ph -> E e. S ) | 
						
							| 6 |  | constrrtlc.f |  |-  ( ph -> F e. S ) | 
						
							| 7 |  | constrrtlc.t |  |-  ( ph -> T e. RR ) | 
						
							| 8 |  | constrrtlc.1 |  |-  ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) | 
						
							| 9 |  | constrrtlc.2 |  |-  ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) ) | 
						
							| 10 |  | constrrtlc2.1 |  |-  ( ph -> A = B ) | 
						
							| 11 | 1 3 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 12 | 10 | eqcomd |  |-  ( ph -> B = A ) | 
						
							| 13 | 11 12 | subeq0bd |  |-  ( ph -> ( B - A ) = 0 ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ph -> ( T x. ( B - A ) ) = ( T x. 0 ) ) | 
						
							| 15 | 7 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 16 | 15 | mul01d |  |-  ( ph -> ( T x. 0 ) = 0 ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( ph -> ( T x. ( B - A ) ) = 0 ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ph -> ( A + ( T x. ( B - A ) ) ) = ( A + 0 ) ) | 
						
							| 19 | 1 2 | sseldd |  |-  ( ph -> A e. CC ) | 
						
							| 20 | 19 | addridd |  |-  ( ph -> ( A + 0 ) = A ) | 
						
							| 21 | 8 18 20 | 3eqtrd |  |-  ( ph -> X = A ) |