| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrrtlc.s |
|- ( ph -> S C_ CC ) |
| 2 |
|
constrrtlc.a |
|- ( ph -> A e. S ) |
| 3 |
|
constrrtlc.b |
|- ( ph -> B e. S ) |
| 4 |
|
constrrtlc.c |
|- ( ph -> C e. S ) |
| 5 |
|
constrrtlc.e |
|- ( ph -> E e. S ) |
| 6 |
|
constrrtlc.f |
|- ( ph -> F e. S ) |
| 7 |
|
constrrtlc.t |
|- ( ph -> T e. RR ) |
| 8 |
|
constrrtlc.1 |
|- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
| 9 |
|
constrrtlc.2 |
|- ( ph -> ( abs ` ( X - C ) ) = ( abs ` ( E - F ) ) ) |
| 10 |
|
constrrtlc2.1 |
|- ( ph -> A = B ) |
| 11 |
1 3
|
sseldd |
|- ( ph -> B e. CC ) |
| 12 |
10
|
eqcomd |
|- ( ph -> B = A ) |
| 13 |
11 12
|
subeq0bd |
|- ( ph -> ( B - A ) = 0 ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( T x. ( B - A ) ) = ( T x. 0 ) ) |
| 15 |
7
|
recnd |
|- ( ph -> T e. CC ) |
| 16 |
15
|
mul01d |
|- ( ph -> ( T x. 0 ) = 0 ) |
| 17 |
14 16
|
eqtrd |
|- ( ph -> ( T x. ( B - A ) ) = 0 ) |
| 18 |
17
|
oveq2d |
|- ( ph -> ( A + ( T x. ( B - A ) ) ) = ( A + 0 ) ) |
| 19 |
1 2
|
sseldd |
|- ( ph -> A e. CC ) |
| 20 |
19
|
addridd |
|- ( ph -> ( A + 0 ) = A ) |
| 21 |
8 18 20
|
3eqtrd |
|- ( ph -> X = A ) |