| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constrrtll.s |  |-  ( ph -> S C_ CC ) | 
						
							| 2 |  | constrrtll.a |  |-  ( ph -> A e. S ) | 
						
							| 3 |  | constrrtll.b |  |-  ( ph -> B e. S ) | 
						
							| 4 |  | constrrtll.c |  |-  ( ph -> C e. S ) | 
						
							| 5 |  | constrrtll.d |  |-  ( ph -> D e. S ) | 
						
							| 6 |  | constrrtll.t |  |-  ( ph -> T e. RR ) | 
						
							| 7 |  | constrrtll.r |  |-  ( ph -> R e. RR ) | 
						
							| 8 |  | constrrtll.1 |  |-  ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) | 
						
							| 9 |  | constrrtll.2 |  |-  ( ph -> X = ( C + ( R x. ( D - C ) ) ) ) | 
						
							| 10 |  | constrrtll.3 |  |-  ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) =/= 0 ) | 
						
							| 11 |  | constrrtll.n |  |-  N = ( A + ( ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) x. ( B - A ) ) ) | 
						
							| 12 | 6 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 13 | 1 3 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 14 | 1 2 | sseldd |  |-  ( ph -> A e. CC ) | 
						
							| 15 | 13 14 | cjsubd |  |-  ( ph -> ( * ` ( B - A ) ) = ( ( * ` B ) - ( * ` A ) ) ) | 
						
							| 16 | 13 14 | subcld |  |-  ( ph -> ( B - A ) e. CC ) | 
						
							| 17 | 16 | cjcld |  |-  ( ph -> ( * ` ( B - A ) ) e. CC ) | 
						
							| 18 | 15 17 | eqeltrrd |  |-  ( ph -> ( ( * ` B ) - ( * ` A ) ) e. CC ) | 
						
							| 19 | 1 5 | sseldd |  |-  ( ph -> D e. CC ) | 
						
							| 20 | 1 4 | sseldd |  |-  ( ph -> C e. CC ) | 
						
							| 21 | 19 20 | subcld |  |-  ( ph -> ( D - C ) e. CC ) | 
						
							| 22 | 18 21 | mulcld |  |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) e. CC ) | 
						
							| 23 | 19 20 | cjsubd |  |-  ( ph -> ( * ` ( D - C ) ) = ( ( * ` D ) - ( * ` C ) ) ) | 
						
							| 24 | 21 | cjcld |  |-  ( ph -> ( * ` ( D - C ) ) e. CC ) | 
						
							| 25 | 23 24 | eqeltrrd |  |-  ( ph -> ( ( * ` D ) - ( * ` C ) ) e. CC ) | 
						
							| 26 | 16 25 | mulcld |  |-  ( ph -> ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) e. CC ) | 
						
							| 27 | 12 22 26 | subdid |  |-  ( ph -> ( T x. ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) = ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) - ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) ) | 
						
							| 28 | 8 | oveq1d |  |-  ( ph -> ( X - C ) = ( ( A + ( T x. ( B - A ) ) ) - C ) ) | 
						
							| 29 | 7 | recnd |  |-  ( ph -> R e. CC ) | 
						
							| 30 | 29 21 | mulcld |  |-  ( ph -> ( R x. ( D - C ) ) e. CC ) | 
						
							| 31 | 20 30 9 | mvrladdd |  |-  ( ph -> ( X - C ) = ( R x. ( D - C ) ) ) | 
						
							| 32 | 28 31 | eqtr3d |  |-  ( ph -> ( ( A + ( T x. ( B - A ) ) ) - C ) = ( R x. ( D - C ) ) ) | 
						
							| 33 | 32 30 | eqeltrd |  |-  ( ph -> ( ( A + ( T x. ( B - A ) ) ) - C ) e. CC ) | 
						
							| 34 |  | fveq2 |  |-  ( ( ( * ` ( B - A ) ) x. ( D - C ) ) = 0 -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = ( Im ` 0 ) ) | 
						
							| 35 |  | im0 |  |-  ( Im ` 0 ) = 0 | 
						
							| 36 | 34 35 | eqtrdi |  |-  ( ( ( * ` ( B - A ) ) x. ( D - C ) ) = 0 -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = 0 ) | 
						
							| 37 | 36 | necon3i |  |-  ( ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) =/= 0 -> ( ( * ` ( B - A ) ) x. ( D - C ) ) =/= 0 ) | 
						
							| 38 | 10 37 | syl |  |-  ( ph -> ( ( * ` ( B - A ) ) x. ( D - C ) ) =/= 0 ) | 
						
							| 39 | 17 21 38 | mulne0bbd |  |-  ( ph -> ( D - C ) =/= 0 ) | 
						
							| 40 | 33 29 21 39 | divmul3d |  |-  ( ph -> ( ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) = R <-> ( ( A + ( T x. ( B - A ) ) ) - C ) = ( R x. ( D - C ) ) ) ) | 
						
							| 41 | 32 40 | mpbird |  |-  ( ph -> ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) = R ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ph -> ( * ` ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) ) = ( * ` R ) ) | 
						
							| 43 | 33 21 39 | cjdivd |  |-  ( ph -> ( * ` ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) ) = ( ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) / ( * ` ( D - C ) ) ) ) | 
						
							| 44 | 12 16 | mulcld |  |-  ( ph -> ( T x. ( B - A ) ) e. CC ) | 
						
							| 45 | 14 44 | addcld |  |-  ( ph -> ( A + ( T x. ( B - A ) ) ) e. CC ) | 
						
							| 46 | 45 20 | cjsubd |  |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) ) | 
						
							| 47 | 14 44 | cjaddd |  |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) ) | 
						
							| 48 | 12 16 | cjmuld |  |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( ( * ` T ) x. ( * ` ( B - A ) ) ) ) | 
						
							| 49 | 6 | cjred |  |-  ( ph -> ( * ` T ) = T ) | 
						
							| 50 | 49 15 | oveq12d |  |-  ( ph -> ( ( * ` T ) x. ( * ` ( B - A ) ) ) = ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) | 
						
							| 51 | 48 50 | eqtrd |  |-  ( ph -> ( * ` ( T x. ( B - A ) ) ) = ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ph -> ( ( * ` A ) + ( * ` ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) ) | 
						
							| 53 | 47 52 | eqtrd |  |-  ( ph -> ( * ` ( A + ( T x. ( B - A ) ) ) ) = ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( ph -> ( ( * ` ( A + ( T x. ( B - A ) ) ) ) - ( * ` C ) ) = ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) ) | 
						
							| 55 | 46 54 | eqtrd |  |-  ( ph -> ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) = ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) ) | 
						
							| 56 | 55 23 | oveq12d |  |-  ( ph -> ( ( * ` ( ( A + ( T x. ( B - A ) ) ) - C ) ) / ( * ` ( D - C ) ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) / ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 57 | 43 56 | eqtrd |  |-  ( ph -> ( * ` ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) / ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 58 | 7 | cjred |  |-  ( ph -> ( * ` R ) = R ) | 
						
							| 59 | 42 57 58 | 3eqtr3rd |  |-  ( ph -> R = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) / ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 60 | 41 59 | eqtrd |  |-  ( ph -> ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) / ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 61 | 14 | cjcld |  |-  ( ph -> ( * ` A ) e. CC ) | 
						
							| 62 | 12 18 | mulcld |  |-  ( ph -> ( T x. ( ( * ` B ) - ( * ` A ) ) ) e. CC ) | 
						
							| 63 | 61 62 | addcld |  |-  ( ph -> ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) e. CC ) | 
						
							| 64 | 20 | cjcld |  |-  ( ph -> ( * ` C ) e. CC ) | 
						
							| 65 | 63 64 | subcld |  |-  ( ph -> ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) e. CC ) | 
						
							| 66 | 21 39 | cjne0d |  |-  ( ph -> ( * ` ( D - C ) ) =/= 0 ) | 
						
							| 67 | 23 66 | eqnetrrd |  |-  ( ph -> ( ( * ` D ) - ( * ` C ) ) =/= 0 ) | 
						
							| 68 | 33 21 65 25 39 67 | divmuleqd |  |-  ( ph -> ( ( ( ( A + ( T x. ( B - A ) ) ) - C ) / ( D - C ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) / ( ( * ` D ) - ( * ` C ) ) ) <-> ( ( ( A + ( T x. ( B - A ) ) ) - C ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 69 | 60 68 | mpbid |  |-  ( ph -> ( ( ( A + ( T x. ( B - A ) ) ) - C ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) x. ( D - C ) ) ) | 
						
							| 70 | 14 44 20 | addsubassd |  |-  ( ph -> ( ( A + ( T x. ( B - A ) ) ) - C ) = ( A + ( ( T x. ( B - A ) ) - C ) ) ) | 
						
							| 71 | 44 14 20 | addsub12d |  |-  ( ph -> ( ( T x. ( B - A ) ) + ( A - C ) ) = ( A + ( ( T x. ( B - A ) ) - C ) ) ) | 
						
							| 72 | 70 71 | eqtr4d |  |-  ( ph -> ( ( A + ( T x. ( B - A ) ) ) - C ) = ( ( T x. ( B - A ) ) + ( A - C ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ph -> ( ( ( A + ( T x. ( B - A ) ) ) - C ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( ( ( T x. ( B - A ) ) + ( A - C ) ) x. ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 74 | 14 20 | subcld |  |-  ( ph -> ( A - C ) e. CC ) | 
						
							| 75 | 44 74 25 | adddird |  |-  ( ph -> ( ( ( T x. ( B - A ) ) + ( A - C ) ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( ( ( T x. ( B - A ) ) x. ( ( * ` D ) - ( * ` C ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) | 
						
							| 76 | 12 16 25 | mulassd |  |-  ( ph -> ( ( T x. ( B - A ) ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ph -> ( ( ( T x. ( B - A ) ) x. ( ( * ` D ) - ( * ` C ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) = ( ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) | 
						
							| 78 | 73 75 77 | 3eqtrd |  |-  ( ph -> ( ( ( A + ( T x. ( B - A ) ) ) - C ) x. ( ( * ` D ) - ( * ` C ) ) ) = ( ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) | 
						
							| 79 | 61 62 64 | addsubassd |  |-  ( ph -> ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) = ( ( * ` A ) + ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) - ( * ` C ) ) ) ) | 
						
							| 80 | 62 61 64 | addsub12d |  |-  ( ph -> ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) + ( ( * ` A ) - ( * ` C ) ) ) = ( ( * ` A ) + ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) - ( * ` C ) ) ) ) | 
						
							| 81 | 79 80 | eqtr4d |  |-  ( ph -> ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) = ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) + ( ( * ` A ) - ( * ` C ) ) ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( ph -> ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) x. ( D - C ) ) = ( ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) + ( ( * ` A ) - ( * ` C ) ) ) x. ( D - C ) ) ) | 
						
							| 83 | 61 64 | subcld |  |-  ( ph -> ( ( * ` A ) - ( * ` C ) ) e. CC ) | 
						
							| 84 | 62 83 21 | adddird |  |-  ( ph -> ( ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) + ( ( * ` A ) - ( * ` C ) ) ) x. ( D - C ) ) = ( ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) x. ( D - C ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 85 | 12 18 21 | mulassd |  |-  ( ph -> ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) x. ( D - C ) ) = ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) ) | 
						
							| 86 | 85 | oveq1d |  |-  ( ph -> ( ( ( T x. ( ( * ` B ) - ( * ` A ) ) ) x. ( D - C ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) = ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 87 | 82 84 86 | 3eqtrd |  |-  ( ph -> ( ( ( ( * ` A ) + ( T x. ( ( * ` B ) - ( * ` A ) ) ) ) - ( * ` C ) ) x. ( D - C ) ) = ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 88 | 69 78 87 | 3eqtr3d |  |-  ( ph -> ( ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) = ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 89 | 12 26 | mulcld |  |-  ( ph -> ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) e. CC ) | 
						
							| 90 | 74 25 | mulcld |  |-  ( ph -> ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) e. CC ) | 
						
							| 91 | 12 22 | mulcld |  |-  ( ph -> ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) e. CC ) | 
						
							| 92 | 83 21 | mulcld |  |-  ( ph -> ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) e. CC ) | 
						
							| 93 | 89 90 91 92 | addsubeq4d |  |-  ( ph -> ( ( ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) + ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) ) = ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) + ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) <-> ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) - ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) = ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) ) | 
						
							| 94 | 88 93 | mpbid |  |-  ( ph -> ( ( T x. ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) - ( T x. ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) = ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 95 | 27 94 | eqtrd |  |-  ( ph -> ( T x. ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) = ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) ) | 
						
							| 96 | 22 26 | subcld |  |-  ( ph -> ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) e. CC ) | 
						
							| 97 | 90 92 | subcld |  |-  ( ph -> ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) e. CC ) | 
						
							| 98 | 17 21 | mulcld |  |-  ( ph -> ( ( * ` ( B - A ) ) x. ( D - C ) ) e. CC ) | 
						
							| 99 |  | reim0b |  |-  ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. CC -> ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = 0 ) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ph -> ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = 0 ) ) | 
						
							| 101 | 100 | necon3bbid |  |-  ( ph -> ( -. ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( Im ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) =/= 0 ) ) | 
						
							| 102 | 10 101 | mpbird |  |-  ( ph -> -. ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR ) | 
						
							| 103 |  | cjreb |  |-  ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. CC -> ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = ( ( * ` ( B - A ) ) x. ( D - C ) ) ) ) | 
						
							| 104 | 98 103 | syl |  |-  ( ph -> ( ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = ( ( * ` ( B - A ) ) x. ( D - C ) ) ) ) | 
						
							| 105 | 104 | necon3bbid |  |-  ( ph -> ( -. ( ( * ` ( B - A ) ) x. ( D - C ) ) e. RR <-> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) =/= ( ( * ` ( B - A ) ) x. ( D - C ) ) ) ) | 
						
							| 106 | 102 105 | mpbid |  |-  ( ph -> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) =/= ( ( * ` ( B - A ) ) x. ( D - C ) ) ) | 
						
							| 107 | 17 21 | cjmuld |  |-  ( ph -> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = ( ( * ` ( * ` ( B - A ) ) ) x. ( * ` ( D - C ) ) ) ) | 
						
							| 108 | 16 | cjcjd |  |-  ( ph -> ( * ` ( * ` ( B - A ) ) ) = ( B - A ) ) | 
						
							| 109 | 108 23 | oveq12d |  |-  ( ph -> ( ( * ` ( * ` ( B - A ) ) ) x. ( * ` ( D - C ) ) ) = ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 110 | 107 109 | eqtrd |  |-  ( ph -> ( * ` ( ( * ` ( B - A ) ) x. ( D - C ) ) ) = ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 111 | 15 | oveq1d |  |-  ( ph -> ( ( * ` ( B - A ) ) x. ( D - C ) ) = ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) | 
						
							| 112 | 106 110 111 | 3netr3d |  |-  ( ph -> ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) =/= ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) ) | 
						
							| 113 | 112 | necomd |  |-  ( ph -> ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) =/= ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) | 
						
							| 114 | 22 26 113 | subne0d |  |-  ( ph -> ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) =/= 0 ) | 
						
							| 115 | 12 96 97 114 | ldiv |  |-  ( ph -> ( ( T x. ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) = ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) <-> T = ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) ) ) | 
						
							| 116 | 95 115 | mpbid |  |-  ( ph -> T = ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ph -> ( T x. ( B - A ) ) = ( ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) x. ( B - A ) ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ph -> ( A + ( T x. ( B - A ) ) ) = ( A + ( ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) x. ( B - A ) ) ) ) | 
						
							| 119 | 8 118 | eqtrd |  |-  ( ph -> X = ( A + ( ( ( ( ( A - C ) x. ( ( * ` D ) - ( * ` C ) ) ) - ( ( ( * ` A ) - ( * ` C ) ) x. ( D - C ) ) ) / ( ( ( ( * ` B ) - ( * ` A ) ) x. ( D - C ) ) - ( ( B - A ) x. ( ( * ` D ) - ( * ` C ) ) ) ) ) x. ( B - A ) ) ) ) | 
						
							| 120 | 119 11 | eqtr4di |  |-  ( ph -> X = N ) |