Description: The imaginary part of zero. (Contributed by NM, 27-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | im0 | |- ( Im ` 0 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | reim0 | |- ( 0 e. RR -> ( Im ` 0 ) = 0 ) |
|
3 | 1 2 | ax-mp | |- ( Im ` 0 ) = 0 |