| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recn | 
							 |-  ( A e. RR -> A e. CC )  | 
						
						
							| 2 | 
							
								
							 | 
							it0e0 | 
							 |-  ( _i x. 0 ) = 0  | 
						
						
							| 3 | 
							
								2
							 | 
							oveq2i | 
							 |-  ( A + ( _i x. 0 ) ) = ( A + 0 )  | 
						
						
							| 4 | 
							
								
							 | 
							addrid | 
							 |-  ( A e. CC -> ( A + 0 ) = A )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtrid | 
							 |-  ( A e. CC -> ( A + ( _i x. 0 ) ) = A )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							syl | 
							 |-  ( A e. RR -> ( A + ( _i x. 0 ) ) = A )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							 |-  ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = ( Im ` A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 9 | 
							
								
							 | 
							crim | 
							 |-  ( ( A e. RR /\ 0 e. RR ) -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpan2 | 
							 |-  ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtr3d | 
							 |-  ( A e. RR -> ( Im ` A ) = 0 )  |