Step |
Hyp |
Ref |
Expression |
1 |
|
constrrtll.s |
|
2 |
|
constrrtll.a |
|
3 |
|
constrrtll.b |
|
4 |
|
constrrtll.c |
|
5 |
|
constrrtll.d |
|
6 |
|
constrrtll.t |
|
7 |
|
constrrtll.r |
|
8 |
|
constrrtll.1 |
|
9 |
|
constrrtll.2 |
|
10 |
|
constrrtll.3 |
|
11 |
|
constrrtll.n |
|
12 |
6
|
recnd |
|
13 |
1 3
|
sseldd |
|
14 |
1 2
|
sseldd |
|
15 |
13 14
|
cjsubd |
|
16 |
13 14
|
subcld |
|
17 |
16
|
cjcld |
|
18 |
15 17
|
eqeltrrd |
|
19 |
1 5
|
sseldd |
|
20 |
1 4
|
sseldd |
|
21 |
19 20
|
subcld |
|
22 |
18 21
|
mulcld |
|
23 |
19 20
|
cjsubd |
|
24 |
21
|
cjcld |
|
25 |
23 24
|
eqeltrrd |
|
26 |
16 25
|
mulcld |
|
27 |
12 22 26
|
subdid |
|
28 |
8
|
oveq1d |
|
29 |
7
|
recnd |
|
30 |
29 21
|
mulcld |
|
31 |
20 30 9
|
mvrladdd |
|
32 |
28 31
|
eqtr3d |
|
33 |
32 30
|
eqeltrd |
|
34 |
|
fveq2 |
|
35 |
|
im0 |
|
36 |
34 35
|
eqtrdi |
|
37 |
36
|
necon3i |
|
38 |
10 37
|
syl |
|
39 |
17 21 38
|
mulne0bbd |
|
40 |
33 29 21 39
|
divmul3d |
|
41 |
32 40
|
mpbird |
|
42 |
41
|
fveq2d |
|
43 |
33 21 39
|
cjdivd |
|
44 |
12 16
|
mulcld |
|
45 |
14 44
|
addcld |
|
46 |
45 20
|
cjsubd |
|
47 |
14 44
|
cjaddd |
|
48 |
12 16
|
cjmuld |
|
49 |
6
|
cjred |
|
50 |
49 15
|
oveq12d |
|
51 |
48 50
|
eqtrd |
|
52 |
51
|
oveq2d |
|
53 |
47 52
|
eqtrd |
|
54 |
53
|
oveq1d |
|
55 |
46 54
|
eqtrd |
|
56 |
55 23
|
oveq12d |
|
57 |
43 56
|
eqtrd |
|
58 |
7
|
cjred |
|
59 |
42 57 58
|
3eqtr3rd |
|
60 |
41 59
|
eqtrd |
|
61 |
14
|
cjcld |
|
62 |
12 18
|
mulcld |
|
63 |
61 62
|
addcld |
|
64 |
20
|
cjcld |
|
65 |
63 64
|
subcld |
|
66 |
21 39
|
cjne0d |
|
67 |
23 66
|
eqnetrrd |
|
68 |
33 21 65 25 39 67
|
divmuleqd |
|
69 |
60 68
|
mpbid |
|
70 |
14 44 20
|
addsubassd |
|
71 |
44 14 20
|
addsub12d |
|
72 |
70 71
|
eqtr4d |
|
73 |
72
|
oveq1d |
|
74 |
14 20
|
subcld |
|
75 |
44 74 25
|
adddird |
|
76 |
12 16 25
|
mulassd |
|
77 |
76
|
oveq1d |
|
78 |
73 75 77
|
3eqtrd |
|
79 |
61 62 64
|
addsubassd |
|
80 |
62 61 64
|
addsub12d |
|
81 |
79 80
|
eqtr4d |
|
82 |
81
|
oveq1d |
|
83 |
61 64
|
subcld |
|
84 |
62 83 21
|
adddird |
|
85 |
12 18 21
|
mulassd |
|
86 |
85
|
oveq1d |
|
87 |
82 84 86
|
3eqtrd |
|
88 |
69 78 87
|
3eqtr3d |
|
89 |
12 26
|
mulcld |
|
90 |
74 25
|
mulcld |
|
91 |
12 22
|
mulcld |
|
92 |
83 21
|
mulcld |
|
93 |
89 90 91 92
|
addsubeq4d |
|
94 |
88 93
|
mpbid |
|
95 |
27 94
|
eqtrd |
|
96 |
22 26
|
subcld |
|
97 |
90 92
|
subcld |
|
98 |
17 21
|
mulcld |
|
99 |
|
reim0b |
|
100 |
98 99
|
syl |
|
101 |
100
|
necon3bbid |
|
102 |
10 101
|
mpbird |
|
103 |
|
cjreb |
|
104 |
98 103
|
syl |
|
105 |
104
|
necon3bbid |
|
106 |
102 105
|
mpbid |
|
107 |
17 21
|
cjmuld |
|
108 |
16
|
cjcjd |
|
109 |
108 23
|
oveq12d |
|
110 |
107 109
|
eqtrd |
|
111 |
15
|
oveq1d |
|
112 |
106 110 111
|
3netr3d |
|
113 |
112
|
necomd |
|
114 |
22 26 113
|
subne0d |
|
115 |
12 96 97 114
|
ldiv |
|
116 |
95 115
|
mpbid |
|
117 |
116
|
oveq1d |
|
118 |
117
|
oveq2d |
|
119 |
8 118
|
eqtrd |
|
120 |
119 11
|
eqtr4di |
|