Metamath Proof Explorer


Theorem addsubeq4d

Description: Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
addsub4d.4 φD
Assertion addsubeq4d φA+B=C+DCA=BD

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 addsub4d.4 φD
5 addsubeq4 ABCDA+B=C+DCA=BD
6 1 2 3 4 5 syl22anc φA+B=C+DCA=BD