Metamath Proof Explorer


Theorem addsubeq4

Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion addsubeq4 ABCDA+B=C+DCA=BD

Proof

Step Hyp Ref Expression
1 eqcom CA=BDBD=CA
2 subcl CACA
3 2 ancoms ACCA
4 subadd BDCABD=CAD+C-A=B
5 4 3expa BDCABD=CAD+C-A=B
6 5 ancoms CABDBD=CAD+C-A=B
7 3 6 sylan ACBDBD=CAD+C-A=B
8 7 an4s ABCDBD=CAD+C-A=B
9 1 8 bitrid ABCDCA=BDD+C-A=B
10 addcom CDC+D=D+C
11 10 adantl ACDC+D=D+C
12 11 oveq1d ACDC+D-A=D+C-A
13 addsubass DCAD+C-A=D+C-A
14 13 3com12 CDAD+C-A=D+C-A
15 14 3expa CDAD+C-A=D+C-A
16 15 ancoms ACDD+C-A=D+C-A
17 12 16 eqtrd ACDC+D-A=D+C-A
18 17 adantlr ABCDC+D-A=D+C-A
19 18 eqeq1d ABCDC+D-A=BD+C-A=B
20 addcl CDC+D
21 subadd C+DABC+D-A=BA+B=C+D
22 21 3expb C+DABC+D-A=BA+B=C+D
23 22 ancoms ABC+DC+D-A=BA+B=C+D
24 20 23 sylan2 ABCDC+D-A=BA+B=C+D
25 9 19 24 3bitr2rd ABCDA+B=C+DCA=BD