Metamath Proof Explorer


Theorem subadd

Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997) (Revised by Mario Carneiro, 21-Dec-2013)

Ref Expression
Assertion subadd ABCAB=CB+C=A

Proof

Step Hyp Ref Expression
1 subval ABAB=ιx|B+x=A
2 1 eqeq1d ABAB=Cιx|B+x=A=C
3 2 3adant3 ABCAB=Cιx|B+x=A=C
4 negeu BA∃!xB+x=A
5 oveq2 x=CB+x=B+C
6 5 eqeq1d x=CB+x=AB+C=A
7 6 riota2 C∃!xB+x=AB+C=Aιx|B+x=A=C
8 4 7 sylan2 CBAB+C=Aιx|B+x=A=C
9 8 3impb CBAB+C=Aιx|B+x=A=C
10 9 3com13 ABCB+C=Aιx|B+x=A=C
11 3 10 bitr4d ABCAB=CB+C=A